Metamath Proof Explorer


Theorem onaddscl

Description: The surreal ordinals are closed under addition. (Contributed by Scott Fenton, 22-Aug-2025)

Ref Expression
Assertion onaddscl A On s B On s A + s B On s

Proof

Step Hyp Ref Expression
1 fvex L A V
2 1 abrexex x | y L A x = y + s B V
3 fvex L B V
4 3 abrexex x | y L B x = A + s y V
5 2 4 unex x | y L A x = y + s B x | y L B x = A + s y V
6 5 a1i A On s B On s x | y L A x = y + s B x | y L B x = A + s y V
7 leftssno L A No
8 7 sseli y L A y No
9 8 adantl A On s B On s y L A y No
10 onsno B On s B No
11 10 ad2antlr A On s B On s y L A B No
12 9 11 addscld A On s B On s y L A y + s B No
13 eleq1 x = y + s B x No y + s B No
14 12 13 syl5ibrcom A On s B On s y L A x = y + s B x No
15 14 rexlimdva A On s B On s y L A x = y + s B x No
16 15 abssdv A On s B On s x | y L A x = y + s B No
17 onsno A On s A No
18 17 ad2antrr A On s B On s y L B A No
19 leftssno L B No
20 19 sseli y L B y No
21 20 adantl A On s B On s y L B y No
22 18 21 addscld A On s B On s y L B A + s y No
23 eleq1 x = A + s y x No A + s y No
24 22 23 syl5ibrcom A On s B On s y L B x = A + s y x No
25 24 rexlimdva A On s B On s y L B x = A + s y x No
26 25 abssdv A On s B On s x | y L B x = A + s y No
27 16 26 unssd A On s B On s x | y L A x = y + s B x | y L B x = A + s y No
28 1 elpw L A 𝒫 No L A No
29 7 28 mpbir L A 𝒫 No
30 nulssgt L A 𝒫 No L A s
31 29 30 mp1i A On s B On s L A s
32 3 elpw L B 𝒫 No L B No
33 19 32 mpbir L B 𝒫 No
34 nulssgt L B 𝒫 No L B s
35 33 34 mp1i A On s B On s L B s
36 onscutleft A On s A = L A | s
37 36 adantr A On s B On s A = L A | s
38 onscutleft B On s B = L B | s
39 38 adantl A On s B On s B = L B | s
40 31 35 37 39 addsunif A On s B On s A + s B = x | y L A x = y + s B x | y L B x = A + s y | s x | y x = y + s B x | y x = A + s y
41 rex0 ¬ y x = y + s B
42 41 abf x | y x = y + s B =
43 rex0 ¬ y x = A + s y
44 43 abf x | y x = A + s y =
45 42 44 uneq12i x | y x = y + s B x | y x = A + s y =
46 un0 =
47 45 46 eqtri x | y x = y + s B x | y x = A + s y =
48 47 oveq2i x | y L A x = y + s B x | y L B x = A + s y | s x | y x = y + s B x | y x = A + s y = x | y L A x = y + s B x | y L B x = A + s y | s
49 40 48 eqtrdi A On s B On s A + s B = x | y L A x = y + s B x | y L B x = A + s y | s
50 6 27 49 elons2d A On s B On s A + s B On s