Metamath Proof Explorer


Theorem onego

Description: The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020)

Ref Expression
Assertion onego AOddAOdd

Proof

Step Hyp Ref Expression
1 znegcl AA
2 1 adantr AA12A
3 znegcl A12A12
4 3 adantl AA12A12
5 peano2zm AA1
6 5 zcnd AA1
7 6 adantr AA12A1
8 2cnd AA122
9 2ne0 20
10 9 a1i AA1220
11 divneg A1220A12=A12
12 11 eleq1d A1220A12A12
13 7 8 10 12 syl3anc AA12A12A12
14 4 13 mpbid AA12A12
15 zcn AA
16 1cnd A1
17 negsubdi A1A1=-A+1
18 17 eqcomd A1-A+1=A1
19 15 16 18 syl2anc A-A+1=A1
20 19 oveq1d A-A+12=A12
21 20 eleq1d A-A+12A12
22 21 adantr AA12-A+12A12
23 14 22 mpbird AA12-A+12
24 2 23 jca AA12A-A+12
25 isodd2 AOddAA12
26 isodd AOddA-A+12
27 24 25 26 3imtr4i AOddAOdd