Description: The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of TakeutiZaring p. 45. (Contributed by NM, 31-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | onint | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon | |
|
2 | tz7.5 | |
|
3 | 1 2 | mp3an1 | |
4 | ssel | |
|
5 | 4 | imdistani | |
6 | ssel | |
|
7 | ontri1 | |
|
8 | ssel | |
|
9 | 7 8 | syl6bir | |
10 | 9 | ex | |
11 | 6 10 | sylan9 | |
12 | 11 | com4r | |
13 | 12 | imp31 | |
14 | 13 | ralimdva | |
15 | disj | |
|
16 | vex | |
|
17 | 16 | elint2 | |
18 | 14 15 17 | 3imtr4g | |
19 | 5 18 | sylan2 | |
20 | 19 | exp32 | |
21 | 20 | com4l | |
22 | 21 | imp32 | |
23 | 22 | ssrdv | |
24 | intss1 | |
|
25 | 24 | ad2antrl | |
26 | 23 25 | eqssd | |
27 | 26 | eleq1d | |
28 | 27 | biimpd | |
29 | 28 | exp32 | |
30 | 29 | com34 | |
31 | 30 | pm2.43d | |
32 | 31 | rexlimdv | |
33 | 3 32 | syl5 | |
34 | 33 | anabsi5 | |