Metamath Proof Explorer


Theorem onint

Description: The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of TakeutiZaring p. 45. (Contributed by NM, 31-Jan-1997)

Ref Expression
Assertion onint AOnAAA

Proof

Step Hyp Ref Expression
1 ordon OrdOn
2 tz7.5 OrdOnAOnAxAAx=
3 1 2 mp3an1 AOnAxAAx=
4 ssel AOnxAxOn
5 4 imdistani AOnxAAOnxOn
6 ssel AOnzAzOn
7 ontri1 xOnzOnxz¬zx
8 ssel xzyxyz
9 7 8 syl6bir xOnzOn¬zxyxyz
10 9 ex xOnzOn¬zxyxyz
11 6 10 sylan9 AOnxOnzA¬zxyxyz
12 11 com4r yxAOnxOnzA¬zxyz
13 12 imp31 yxAOnxOnzA¬zxyz
14 13 ralimdva yxAOnxOnzA¬zxzAyz
15 disj Ax=zA¬zx
16 vex yV
17 16 elint2 yAzAyz
18 14 15 17 3imtr4g yxAOnxOnAx=yA
19 5 18 sylan2 yxAOnxAAx=yA
20 19 exp32 yxAOnxAAx=yA
21 20 com4l AOnxAAx=yxyA
22 21 imp32 AOnxAAx=yxyA
23 22 ssrdv AOnxAAx=xA
24 intss1 xAAx
25 24 ad2antrl AOnxAAx=Ax
26 23 25 eqssd AOnxAAx=x=A
27 26 eleq1d AOnxAAx=xAAA
28 27 biimpd AOnxAAx=xAAA
29 28 exp32 AOnxAAx=xAAA
30 29 com34 AOnxAxAAx=AA
31 30 pm2.43d AOnxAAx=AA
32 31 rexlimdv AOnxAAx=AA
33 3 32 syl5 AOnAOnAAA
34 33 anabsi5 AOnAAA