Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | onsucconni.1 | |
|
Assertion | onsucconni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsucconni.1 | |
|
2 | onsuctop | |
|
3 | 1 2 | ax-mp | |
4 | elin | |
|
5 | elsuci | |
|
6 | 1 | onunisuci | |
7 | 6 | eqcomi | |
8 | 7 | cldopn | |
9 | 1 | onsuci | |
10 | 9 | oneli | |
11 | elndif | |
|
12 | on0eln0 | |
|
13 | 12 | biimprd | |
14 | 13 | necon1bd | |
15 | ssdif0 | |
|
16 | 1 | onssneli | |
17 | 15 16 | sylbir | |
18 | 11 14 17 | syl56 | |
19 | 18 | con2d | |
20 | 1 | oneli | |
21 | on0eln0 | |
|
22 | 21 | biimprd | |
23 | 20 22 | syl | |
24 | 23 | necon1bd | |
25 | 19 24 | sylcom | |
26 | 10 25 | syl | |
27 | 26 | orim1d | |
28 | 27 | impcom | |
29 | vex | |
|
30 | 29 | elpr | |
31 | 28 30 | sylibr | |
32 | 5 8 31 | syl2an | |
33 | 4 32 | sylbi | |
34 | 33 | ssriv | |
35 | 7 | isconn2 | |
36 | 3 34 35 | mpbir2an | |