Metamath Proof Explorer


Theorem onsucconni

Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015)

Ref Expression
Hypothesis onsucconni.1 AOn
Assertion onsucconni sucAConn

Proof

Step Hyp Ref Expression
1 onsucconni.1 AOn
2 onsuctop AOnsucATop
3 1 2 ax-mp sucATop
4 elin xsucAClsdsucAxsucAxClsdsucA
5 elsuci xsucAxAx=A
6 1 onunisuci sucA=A
7 6 eqcomi A=sucA
8 7 cldopn xClsdsucAAxsucA
9 1 onsuci sucAOn
10 9 oneli AxsucAAxOn
11 elndif x¬Ax
12 on0eln0 AxOnAxAx
13 12 biimprd AxOnAxAx
14 13 necon1bd AxOn¬AxAx=
15 ssdif0 AxAx=
16 1 onssneli Ax¬xA
17 15 16 sylbir Ax=¬xA
18 11 14 17 syl56 AxOnx¬xA
19 18 con2d AxOnxA¬x
20 1 oneli xAxOn
21 on0eln0 xOnxx
22 21 biimprd xOnxx
23 20 22 syl xAxx
24 23 necon1bd xA¬xx=
25 19 24 sylcom AxOnxAx=
26 10 25 syl AxsucAxAx=
27 26 orim1d AxsucAxAx=Ax=x=A
28 27 impcom xAx=AAxsucAx=x=A
29 vex xV
30 29 elpr xAx=x=A
31 28 30 sylibr xAx=AAxsucAxA
32 5 8 31 syl2an xsucAxClsdsucAxA
33 4 32 sylbi xsucAClsdsucAxA
34 33 ssriv sucAClsdsucAA
35 7 isconn2 sucAConnsucATopsucAClsdsucAA
36 3 34 35 mpbir2an sucAConn