Metamath Proof Explorer


Theorem onsucf1olem

Description: The successor operation is bijective between the ordinals and the class of successor ordinals. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)

Ref Expression
Assertion onsucf1olem AOnA¬LimA∃!bOnA=sucb

Proof

Step Hyp Ref Expression
1 onuni AOnAOn
2 1 3ad2ant1 AOnA¬LimAAOn
3 eloni AOnOrdA
4 unizlim OrdAA=AA=LimA
5 oran A=LimA¬¬A=¬LimA
6 df-ne A¬A=
7 6 anbi1i A¬LimA¬A=¬LimA
8 5 7 xchbinxr A=LimA¬A¬LimA
9 4 8 bitrdi OrdAA=A¬A¬LimA
10 3 9 syl AOnA=A¬A¬LimA
11 pm2.21 ¬A¬LimAA¬LimAA=sucA
12 10 11 syl6bi AOnA=AA¬LimAA=sucA
13 12 com23 AOnA¬LimAA=AA=sucA
14 13 3impib AOnA¬LimAA=AA=sucA
15 idd AOnA¬LimAA=sucAA=sucA
16 onuniorsuc AOnA=AA=sucA
17 16 3ad2ant1 AOnA¬LimAA=AA=sucA
18 14 15 17 mpjaod AOnA¬LimAA=sucA
19 2 18 jca AOnA¬LimAAOnA=sucA
20 eleq1 b=AbOnAOn
21 suceq b=Asucb=sucA
22 21 eqeq2d b=AA=sucbA=sucA
23 20 22 anbi12d b=AbOnA=sucbAOnA=sucA
24 2 19 23 spcedv AOnA¬LimAbbOnA=sucb
25 onsucf1lem AOn*bOnA=sucb
26 25 3ad2ant1 AOnA¬LimA*bOnA=sucb
27 df-eu ∃!bbOnA=sucbbbOnA=sucb*bbOnA=sucb
28 df-reu ∃!bOnA=sucb∃!bbOnA=sucb
29 df-rmo *bOnA=sucb*bbOnA=sucb
30 29 anbi2i bbOnA=sucb*bOnA=sucbbbOnA=sucb*bbOnA=sucb
31 27 28 30 3bitr4i ∃!bOnA=sucbbbOnA=sucb*bOnA=sucb
32 24 26 31 sylanbrc AOnA¬LimA∃!bOnA=sucb