Description: The successor operation is bijective between the ordinals and the class of successor ordinals. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsucf1olem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onuni | |
|
2 | 1 | 3ad2ant1 | |
3 | eloni | |
|
4 | unizlim | |
|
5 | oran | |
|
6 | df-ne | |
|
7 | 6 | anbi1i | |
8 | 5 7 | xchbinxr | |
9 | 4 8 | bitrdi | |
10 | 3 9 | syl | |
11 | pm2.21 | |
|
12 | 10 11 | syl6bi | |
13 | 12 | com23 | |
14 | 13 | 3impib | |
15 | idd | |
|
16 | onuniorsuc | |
|
17 | 16 | 3ad2ant1 | |
18 | 14 15 17 | mpjaod | |
19 | 2 18 | jca | |
20 | eleq1 | |
|
21 | suceq | |
|
22 | 21 | eqeq2d | |
23 | 20 22 | anbi12d | |
24 | 2 19 23 | spcedv | |
25 | onsucf1lem | |
|
26 | 25 | 3ad2ant1 | |
27 | df-eu | |
|
28 | df-reu | |
|
29 | df-rmo | |
|
30 | 29 | anbi2i | |
31 | 27 28 30 | 3bitr4i | |
32 | 24 26 31 | sylanbrc | |