Metamath Proof Explorer


Theorem onsucunifi

Description: The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion onsucunifi AOnAFinAsucA=xAsucx

Proof

Step Hyp Ref Expression
1 ordunifi AOnAFinAAA
2 suceq x=Asucx=sucA
3 2 ssiun2s AAsucAxAsucx
4 1 3 syl AOnAFinAsucAxAsucx
5 ssorduni AOnOrdA
6 ordsuci OrdAOrdsucA
7 5 6 syl AOnOrdsucA
8 onsucuni AOnAsucA
9 8 sselda AOnxAxsucA
10 ordsucss OrdsucAxsucAsucxsucA
11 10 imp OrdsucAxsucAsucxsucA
12 7 9 11 syl2an2r AOnxAsucxsucA
13 12 iunssd AOnxAsucxsucA
14 13 3ad2ant1 AOnAFinAxAsucxsucA
15 4 14 eqssd AOnAFinAsucA=xAsucx