Description: The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | onunel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 | |
|
2 | 1 | biimpi | |
3 | 2 | eleq1d | |
4 | 3 | adantl | |
5 | ontr2 | |
|
6 | 5 | 3adant2 | |
7 | 6 | expdimp | |
8 | 7 | pm4.71rd | |
9 | 4 8 | bitrd | |
10 | ssequn2 | |
|
11 | 10 | biimpi | |
12 | 11 | eleq1d | |
13 | 12 | adantl | |
14 | ontr2 | |
|
15 | 14 | 3adant1 | |
16 | 15 | expdimp | |
17 | 16 | pm4.71d | |
18 | 13 17 | bitrd | |
19 | eloni | |
|
20 | eloni | |
|
21 | ordtri2or2 | |
|
22 | 19 20 21 | syl2an | |
23 | 22 | 3adant3 | |
24 | 9 18 23 | mpjaodan | |