Metamath Proof Explorer


Theorem onunel

Description: The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024)

Ref Expression
Assertion onunel AOnBOnCOnABCACBC

Proof

Step Hyp Ref Expression
1 ssequn1 ABAB=B
2 1 biimpi ABAB=B
3 2 eleq1d ABABCBC
4 3 adantl AOnBOnCOnABABCBC
5 ontr2 AOnCOnABBCAC
6 5 3adant2 AOnBOnCOnABBCAC
7 6 expdimp AOnBOnCOnABBCAC
8 7 pm4.71rd AOnBOnCOnABBCACBC
9 4 8 bitrd AOnBOnCOnABABCACBC
10 ssequn2 BAAB=A
11 10 biimpi BAAB=A
12 11 eleq1d BAABCAC
13 12 adantl AOnBOnCOnBAABCAC
14 ontr2 BOnCOnBAACBC
15 14 3adant1 AOnBOnCOnBAACBC
16 15 expdimp AOnBOnCOnBAACBC
17 16 pm4.71d AOnBOnCOnBAACACBC
18 13 17 bitrd AOnBOnCOnBAABCACBC
19 eloni AOnOrdA
20 eloni BOnOrdB
21 ordtri2or2 OrdAOrdBABBA
22 19 20 21 syl2an AOnBOnABBA
23 22 3adant3 AOnBOnCOnABBA
24 9 18 23 mpjaodan AOnBOnCOnABCACBC