Metamath Proof Explorer


Theorem opeliunxp

Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion opeliunxp xCxAx×BxACB

Proof

Step Hyp Ref Expression
1 df-iun xAx×B=y|xAyx×B
2 1 eleq2i xCxAx×BxCy|xAyx×B
3 opex xCV
4 df-rex xAyx×BxxAyx×B
5 nfv zxAyx×B
6 nfs1v xzxxA
7 nfcv _xz
8 nfcsb1v _xz/xB
9 7 8 nfxp _xz×z/xB
10 9 nfcri xyz×z/xB
11 6 10 nfan xzxxAyz×z/xB
12 sbequ12 x=zxAzxxA
13 sneq x=zx=z
14 csbeq1a x=zB=z/xB
15 13 14 xpeq12d x=zx×B=z×z/xB
16 15 eleq2d x=zyx×Byz×z/xB
17 12 16 anbi12d x=zxAyx×BzxxAyz×z/xB
18 5 11 17 cbvexv1 xxAyx×BzzxxAyz×z/xB
19 4 18 bitri xAyx×BzzxxAyz×z/xB
20 eleq1 y=xCyz×z/xBxCz×z/xB
21 20 anbi2d y=xCzxxAyz×z/xBzxxAxCz×z/xB
22 21 exbidv y=xCzzxxAyz×z/xBzzxxAxCz×z/xB
23 19 22 bitrid y=xCxAyx×BzzxxAxCz×z/xB
24 3 23 elab xCy|xAyx×BzzxxAxCz×z/xB
25 opelxp xCz×z/xBxzCz/xB
26 25 anbi2i zxxAxCz×z/xBzxxAxzCz/xB
27 an12 zxxAxzCz/xBxzzxxACz/xB
28 velsn xzx=z
29 equcom x=zz=x
30 28 29 bitri xzz=x
31 30 anbi1i xzzxxACz/xBz=xzxxACz/xB
32 26 27 31 3bitri zxxAxCz×z/xBz=xzxxACz/xB
33 32 exbii zzxxAxCz×z/xBzz=xzxxACz/xB
34 sbequ12r z=xzxxAxA
35 14 equcoms z=xB=z/xB
36 35 eqcomd z=xz/xB=B
37 36 eleq2d z=xCz/xBCB
38 34 37 anbi12d z=xzxxACz/xBxACB
39 38 equsexvw zz=xzxxACz/xBxACB
40 33 39 bitri zzxxAxCz×z/xBxACB
41 2 24 40 3bitri xCxAx×BxACB