Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opncldeqv.1 | |
|
opncldeqv.2 | |
||
Assertion | opncldeqv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opncldeqv.1 | |
|
2 | opncldeqv.2 | |
|
3 | eqid | |
|
4 | 3 | cldopn | |
5 | 4 | adantl | |
6 | 3 | opncld | |
7 | elssuni | |
|
8 | dfss4 | |
|
9 | 7 8 | sylib | |
10 | 9 | eqcomd | |
11 | 10 | adantl | |
12 | 6 11 | jca | |
13 | eleq1 | |
|
14 | difeq2 | |
|
15 | 14 | eqeq2d | |
16 | 13 15 | anbi12d | |
17 | 6 12 16 | spcedv | |
18 | df-rex | |
|
19 | 17 18 | sylibr | |
20 | 1 19 | sylan | |
21 | 5 20 2 | ralxfrd | |