Metamath Proof Explorer


Theorem opncldeqv

Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses opncldeqv.1 φJTop
opncldeqv.2 φx=Jyψχ
Assertion opncldeqv φxJψyClsdJχ

Proof

Step Hyp Ref Expression
1 opncldeqv.1 φJTop
2 opncldeqv.2 φx=Jyψχ
3 eqid J=J
4 3 cldopn yClsdJJyJ
5 4 adantl φyClsdJJyJ
6 3 opncld JTopxJJxClsdJ
7 elssuni xJxJ
8 dfss4 xJJJx=x
9 7 8 sylib xJJJx=x
10 9 eqcomd xJx=JJx
11 10 adantl JTopxJx=JJx
12 6 11 jca JTopxJJxClsdJx=JJx
13 eleq1 y=JxyClsdJJxClsdJ
14 difeq2 y=JxJy=JJx
15 14 eqeq2d y=Jxx=Jyx=JJx
16 13 15 anbi12d y=JxyClsdJx=JyJxClsdJx=JJx
17 6 12 16 spcedv JTopxJyyClsdJx=Jy
18 df-rex yClsdJx=JyyyClsdJx=Jy
19 17 18 sylibr JTopxJyClsdJx=Jy
20 1 19 sylan φxJyClsdJx=Jy
21 5 20 2 ralxfrd φxJψyClsdJχ