Metamath Proof Explorer


Theorem opnvonmbllem1

Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses opnvonmbllem1.i i φ
opnvonmbllem1.x φ X V
opnvonmbllem1.c φ C : X
opnvonmbllem1.d φ D : X
opnvonmbllem1.s φ i X C i D i B
opnvonmbllem1.g φ B G
opnvonmbllem1.y φ Y i X C i D i
opnvonmbllem1.k K = h × X | i X . h i G
opnvonmbllem1.h H = i X C i D i
Assertion opnvonmbllem1 φ h K Y i X . h i

Proof

Step Hyp Ref Expression
1 opnvonmbllem1.i i φ
2 opnvonmbllem1.x φ X V
3 opnvonmbllem1.c φ C : X
4 opnvonmbllem1.d φ D : X
5 opnvonmbllem1.s φ i X C i D i B
6 opnvonmbllem1.g φ B G
7 opnvonmbllem1.y φ Y i X C i D i
8 opnvonmbllem1.k K = h × X | i X . h i G
9 opnvonmbllem1.h H = i X C i D i
10 3 ffvelrnda φ i X C i
11 4 ffvelrnda φ i X D i
12 opelxpi C i D i C i D i ×
13 10 11 12 syl2anc φ i X C i D i ×
14 1 13 9 fmptdf φ H : X ×
15 qex V
16 15 15 xpex × V
17 16 a1i φ × V
18 17 2 jca φ × V X V
19 elmapg × V X V H × X H : X ×
20 18 19 syl φ H × X H : X ×
21 14 20 mpbird φ H × X
22 1 9 hoi2toco φ i X . H i = i X C i D i
23 5 6 sstrd φ i X C i D i G
24 22 23 eqsstrd φ i X . H i G
25 21 24 jca φ H × X i X . H i G
26 nfcv _ i h
27 nfmpt1 _ i i X C i D i
28 9 27 nfcxfr _ i H
29 26 28 nfeq i h = H
30 coeq2 h = H . h = . H
31 30 fveq1d h = H . h i = . H i
32 31 adantr h = H i X . h i = . H i
33 29 32 ixpeq2d h = H i X . h i = i X . H i
34 33 sseq1d h = H i X . h i G i X . H i G
35 34 8 elrab2 H K H × X i X . H i G
36 25 35 sylibr φ H K
37 7 22 eleqtrrd φ Y i X . H i
38 nfv h Y i X . H i
39 nfcv _ h H
40 nfrab1 _ h h × X | i X . h i G
41 8 40 nfcxfr _ h K
42 33 eleq2d h = H Y i X . h i Y i X . H i
43 38 39 41 42 rspcef H K Y i X . H i h K Y i X . h i
44 36 37 43 syl2anc φ h K Y i X . h i