Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppcco.b | |
|
oppcco.c | |
||
oppcco.o | |
||
oppcco.x | |
||
oppcco.y | |
||
oppcco.z | |
||
Assertion | oppccofval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcco.b | |
|
2 | oppcco.c | |
|
3 | oppcco.o | |
|
4 | oppcco.x | |
|
5 | oppcco.y | |
|
6 | oppcco.z | |
|
7 | elfvex | |
|
8 | 7 1 | eleq2s | |
9 | eqid | |
|
10 | 1 9 2 3 | oppcval | |
11 | 4 8 10 | 3syl | |
12 | 11 | fveq2d | |
13 | ovex | |
|
14 | 1 | fvexi | |
15 | 14 14 | xpex | |
16 | 15 14 | mpoex | |
17 | ccoid | |
|
18 | 17 | setsid | |
19 | 13 16 18 | mp2an | |
20 | 12 19 | eqtr4di | |
21 | simprr | |
|
22 | simprl | |
|
23 | 22 | fveq2d | |
24 | 5 | adantr | |
25 | op2ndg | |
|
26 | 4 24 25 | syl2an2r | |
27 | 23 26 | eqtrd | |
28 | 21 27 | opeq12d | |
29 | 22 | fveq2d | |
30 | op1stg | |
|
31 | 4 24 30 | syl2an2r | |
32 | 29 31 | eqtrd | |
33 | 28 32 | oveq12d | |
34 | 33 | tposeqd | |
35 | 4 5 | opelxpd | |
36 | ovex | |
|
37 | 36 | tposex | |
38 | 37 | a1i | |
39 | 20 34 35 6 38 | ovmpod | |