Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oppgtmd.1 | |
|
Assertion | oppgtmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgtmd.1 | |
|
2 | tmdmnd | |
|
3 | 1 | oppgmnd | |
4 | 2 3 | syl | |
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 | tmdtopon | |
8 | 1 6 | oppgbas | |
9 | 1 5 | oppgtopn | |
10 | 8 9 | istps | |
11 | 7 10 | sylibr | |
12 | eqid | |
|
13 | id | |
|
14 | 7 7 | cnmpt2nd | |
15 | 7 7 | cnmpt1st | |
16 | 5 12 13 7 7 14 15 | cnmpt2plusg | |
17 | eqid | |
|
18 | eqid | |
|
19 | 8 17 18 | plusffval | |
20 | 12 1 17 | oppgplus | |
21 | 6 6 20 | mpoeq123i | |
22 | 19 21 | eqtr2i | |
23 | 22 9 | istmd | |
24 | 4 11 16 23 | syl3anbrc | |