Metamath Proof Explorer


Theorem oppgtmd

Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypothesis oppgtmd.1 O=opp𝑔G
Assertion oppgtmd GTopMndOTopMnd

Proof

Step Hyp Ref Expression
1 oppgtmd.1 O=opp𝑔G
2 tmdmnd GTopMndGMnd
3 1 oppgmnd GMndOMnd
4 2 3 syl GTopMndOMnd
5 eqid TopOpenG=TopOpenG
6 eqid BaseG=BaseG
7 5 6 tmdtopon GTopMndTopOpenGTopOnBaseG
8 1 6 oppgbas BaseG=BaseO
9 1 5 oppgtopn TopOpenG=TopOpenO
10 8 9 istps OTopSpTopOpenGTopOnBaseG
11 7 10 sylibr GTopMndOTopSp
12 eqid +G=+G
13 id GTopMndGTopMnd
14 7 7 cnmpt2nd GTopMndxBaseG,yBaseGyTopOpenG×tTopOpenGCnTopOpenG
15 7 7 cnmpt1st GTopMndxBaseG,yBaseGxTopOpenG×tTopOpenGCnTopOpenG
16 5 12 13 7 7 14 15 cnmpt2plusg GTopMndxBaseG,yBaseGy+GxTopOpenG×tTopOpenGCnTopOpenG
17 eqid +O=+O
18 eqid +𝑓O=+𝑓O
19 8 17 18 plusffval +𝑓O=xBaseG,yBaseGx+Oy
20 12 1 17 oppgplus x+Oy=y+Gx
21 6 6 20 mpoeq123i xBaseG,yBaseGx+Oy=xBaseG,yBaseGy+Gx
22 19 21 eqtr2i xBaseG,yBaseGy+Gx=+𝑓O
23 22 9 istmd OTopMndOMndOTopSpxBaseG,yBaseGy+GxTopOpenG×tTopOpenGCnTopOpenG
24 4 11 16 23 syl3anbrc GTopMndOTopMnd