Metamath Proof Explorer


Theorem opprqus0g

Description: The group identity element of the quotient of the opposite ring is the same as the group identity element of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses opprqus.b B=BaseR
opprqus.o O=opprR
opprqus.q Q=R/𝑠R~QGI
opprqus.i φINrmSGrpR
Assertion opprqus0g φ0opprQ=0O/𝑠O~QGI

Proof

Step Hyp Ref Expression
1 opprqus.b B=BaseR
2 opprqus.o O=opprR
3 opprqus.q Q=R/𝑠R~QGI
4 opprqus.i φINrmSGrpR
5 4 elfvexd φRV
6 nsgsubg INrmSGrpRISubGrpR
7 1 subgss ISubGrpRIB
8 4 6 7 3syl φIB
9 1 2 3 5 8 opprqusbas φBaseopprQ=BaseO/𝑠O~QGI
10 9 adantr φeBaseopprQBaseopprQ=BaseO/𝑠O~QGI
11 4 ad2antrr φeBaseopprQxBaseopprQINrmSGrpR
12 eqid BaseQ=BaseQ
13 simpr φeBaseopprQeBaseopprQ
14 eqid opprQ=opprQ
15 14 12 opprbas BaseQ=BaseopprQ
16 15 eqcomi BaseopprQ=BaseQ
17 13 16 eleqtrdi φeBaseopprQeBaseQ
18 17 adantr φeBaseopprQxBaseopprQeBaseQ
19 simpr φxBaseopprQxBaseopprQ
20 19 16 eleqtrdi φxBaseopprQxBaseQ
21 20 adantlr φeBaseopprQxBaseopprQxBaseQ
22 1 2 3 11 12 18 21 opprqusplusg φeBaseopprQxBaseopprQe+opprQx=e+O/𝑠O~QGIx
23 22 eqeq1d φeBaseopprQxBaseopprQe+opprQx=xe+O/𝑠O~QGIx=x
24 1 2 3 11 12 21 18 opprqusplusg φeBaseopprQxBaseopprQx+opprQe=x+O/𝑠O~QGIe
25 24 eqeq1d φeBaseopprQxBaseopprQx+opprQe=xx+O/𝑠O~QGIe=x
26 23 25 anbi12d φeBaseopprQxBaseopprQe+opprQx=xx+opprQe=xe+O/𝑠O~QGIx=xx+O/𝑠O~QGIe=x
27 10 26 raleqbidva φeBaseopprQxBaseopprQe+opprQx=xx+opprQe=xxBaseO/𝑠O~QGIe+O/𝑠O~QGIx=xx+O/𝑠O~QGIe=x
28 27 pm5.32da φeBaseopprQxBaseopprQe+opprQx=xx+opprQe=xeBaseopprQxBaseO/𝑠O~QGIe+O/𝑠O~QGIx=xx+O/𝑠O~QGIe=x
29 9 eleq2d φeBaseopprQeBaseO/𝑠O~QGI
30 29 anbi1d φeBaseopprQxBaseO/𝑠O~QGIe+O/𝑠O~QGIx=xx+O/𝑠O~QGIe=xeBaseO/𝑠O~QGIxBaseO/𝑠O~QGIe+O/𝑠O~QGIx=xx+O/𝑠O~QGIe=x
31 28 30 bitrd φeBaseopprQxBaseopprQe+opprQx=xx+opprQe=xeBaseO/𝑠O~QGIxBaseO/𝑠O~QGIe+O/𝑠O~QGIx=xx+O/𝑠O~QGIe=x
32 31 iotabidv φιe|eBaseopprQxBaseopprQe+opprQx=xx+opprQe=x=ιe|eBaseO/𝑠O~QGIxBaseO/𝑠O~QGIe+O/𝑠O~QGIx=xx+O/𝑠O~QGIe=x
33 eqid +Q=+Q
34 14 33 oppradd +Q=+opprQ
35 34 eqcomi +opprQ=+Q
36 eqid 0Q=0Q
37 14 36 oppr0 0Q=0opprQ
38 37 eqcomi 0opprQ=0Q
39 16 35 38 grpidval 0opprQ=ιe|eBaseopprQxBaseopprQe+opprQx=xx+opprQe=x
40 eqid BaseO/𝑠O~QGI=BaseO/𝑠O~QGI
41 eqid +O/𝑠O~QGI=+O/𝑠O~QGI
42 eqid 0O/𝑠O~QGI=0O/𝑠O~QGI
43 40 41 42 grpidval 0O/𝑠O~QGI=ιe|eBaseO/𝑠O~QGIxBaseO/𝑠O~QGIe+O/𝑠O~QGIx=xx+O/𝑠O~QGIe=x
44 32 39 43 3eqtr4g φ0opprQ=0O/𝑠O~QGI