Description: The group identity element of the quotient of the opposite ring is the same as the group identity element of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opprqus.b | |
|
opprqus.o | |
||
opprqus.q | |
||
opprqus.i | |
||
Assertion | opprqus0g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprqus.b | |
|
2 | opprqus.o | |
|
3 | opprqus.q | |
|
4 | opprqus.i | |
|
5 | 4 | elfvexd | |
6 | nsgsubg | |
|
7 | 1 | subgss | |
8 | 4 6 7 | 3syl | |
9 | 1 2 3 5 8 | opprqusbas | |
10 | 9 | adantr | |
11 | 4 | ad2antrr | |
12 | eqid | |
|
13 | simpr | |
|
14 | eqid | |
|
15 | 14 12 | opprbas | |
16 | 15 | eqcomi | |
17 | 13 16 | eleqtrdi | |
18 | 17 | adantr | |
19 | simpr | |
|
20 | 19 16 | eleqtrdi | |
21 | 20 | adantlr | |
22 | 1 2 3 11 12 18 21 | opprqusplusg | |
23 | 22 | eqeq1d | |
24 | 1 2 3 11 12 21 18 | opprqusplusg | |
25 | 24 | eqeq1d | |
26 | 23 25 | anbi12d | |
27 | 10 26 | raleqbidva | |
28 | 27 | pm5.32da | |
29 | 9 | eleq2d | |
30 | 29 | anbi1d | |
31 | 28 30 | bitrd | |
32 | 31 | iotabidv | |
33 | eqid | |
|
34 | 14 33 | oppradd | |
35 | 34 | eqcomi | |
36 | eqid | |
|
37 | 14 36 | oppr0 | |
38 | 37 | eqcomi | |
39 | 16 35 38 | grpidval | |
40 | eqid | |
|
41 | eqid | |
|
42 | eqid | |
|
43 | 40 41 42 | grpidval | |
44 | 32 39 43 | 3eqtr4g | |