| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opprqus.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | opprqus.o |  |-  O = ( oppR ` R ) | 
						
							| 3 |  | opprqus.q |  |-  Q = ( R /s ( R ~QG I ) ) | 
						
							| 4 |  | opprqus.i |  |-  ( ph -> I e. ( NrmSGrp ` R ) ) | 
						
							| 5 | 4 | elfvexd |  |-  ( ph -> R e. _V ) | 
						
							| 6 |  | nsgsubg |  |-  ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) | 
						
							| 7 | 1 | subgss |  |-  ( I e. ( SubGrp ` R ) -> I C_ B ) | 
						
							| 8 | 4 6 7 | 3syl |  |-  ( ph -> I C_ B ) | 
						
							| 9 | 1 2 3 5 8 | opprqusbas |  |-  ( ph -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) -> ( Base ` ( oppR ` Q ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) ) | 
						
							| 11 | 4 | ad2antrr |  |-  ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> I e. ( NrmSGrp ` R ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) -> e e. ( Base ` ( oppR ` Q ) ) ) | 
						
							| 14 |  | eqid |  |-  ( oppR ` Q ) = ( oppR ` Q ) | 
						
							| 15 | 14 12 | opprbas |  |-  ( Base ` Q ) = ( Base ` ( oppR ` Q ) ) | 
						
							| 16 | 15 | eqcomi |  |-  ( Base ` ( oppR ` Q ) ) = ( Base ` Q ) | 
						
							| 17 | 13 16 | eleqtrdi |  |-  ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) -> e e. ( Base ` Q ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> e e. ( Base ` Q ) ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` ( oppR ` Q ) ) ) | 
						
							| 20 | 19 16 | eleqtrdi |  |-  ( ( ph /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) ) | 
						
							| 21 | 20 | adantlr |  |-  ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> x e. ( Base ` Q ) ) | 
						
							| 22 | 1 2 3 11 12 18 21 | opprqusplusg |  |-  ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( e ( +g ` ( oppR ` Q ) ) x ) = ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) ) | 
						
							| 23 | 22 | eqeq1d |  |-  ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( ( e ( +g ` ( oppR ` Q ) ) x ) = x <-> ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x ) ) | 
						
							| 24 | 1 2 3 11 12 21 18 | opprqusplusg |  |-  ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( x ( +g ` ( oppR ` Q ) ) e ) = ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) ) | 
						
							| 25 | 24 | eqeq1d |  |-  ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( ( x ( +g ` ( oppR ` Q ) ) e ) = x <-> ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) | 
						
							| 26 | 23 25 | anbi12d |  |-  ( ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) /\ x e. ( Base ` ( oppR ` Q ) ) ) -> ( ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) <-> ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) | 
						
							| 27 | 10 26 | raleqbidva |  |-  ( ( ph /\ e e. ( Base ` ( oppR ` Q ) ) ) -> ( A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) <-> A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) | 
						
							| 28 | 27 | pm5.32da |  |-  ( ph -> ( ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) ) <-> ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) ) | 
						
							| 29 | 9 | eleq2d |  |-  ( ph -> ( e e. ( Base ` ( oppR ` Q ) ) <-> e e. ( Base ` ( O /s ( O ~QG I ) ) ) ) ) | 
						
							| 30 | 29 | anbi1d |  |-  ( ph -> ( ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) <-> ( e e. ( Base ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) ) | 
						
							| 31 | 28 30 | bitrd |  |-  ( ph -> ( ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) ) <-> ( e e. ( Base ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) ) | 
						
							| 32 | 31 | iotabidv |  |-  ( ph -> ( iota e ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) ) ) = ( iota e ( e e. ( Base ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) ) | 
						
							| 33 |  | eqid |  |-  ( +g ` Q ) = ( +g ` Q ) | 
						
							| 34 | 14 33 | oppradd |  |-  ( +g ` Q ) = ( +g ` ( oppR ` Q ) ) | 
						
							| 35 | 34 | eqcomi |  |-  ( +g ` ( oppR ` Q ) ) = ( +g ` Q ) | 
						
							| 36 |  | eqid |  |-  ( 0g ` Q ) = ( 0g ` Q ) | 
						
							| 37 | 14 36 | oppr0 |  |-  ( 0g ` Q ) = ( 0g ` ( oppR ` Q ) ) | 
						
							| 38 | 37 | eqcomi |  |-  ( 0g ` ( oppR ` Q ) ) = ( 0g ` Q ) | 
						
							| 39 | 16 35 38 | grpidval |  |-  ( 0g ` ( oppR ` Q ) ) = ( iota e ( e e. ( Base ` ( oppR ` Q ) ) /\ A. x e. ( Base ` ( oppR ` Q ) ) ( ( e ( +g ` ( oppR ` Q ) ) x ) = x /\ ( x ( +g ` ( oppR ` Q ) ) e ) = x ) ) ) | 
						
							| 40 |  | eqid |  |-  ( Base ` ( O /s ( O ~QG I ) ) ) = ( Base ` ( O /s ( O ~QG I ) ) ) | 
						
							| 41 |  | eqid |  |-  ( +g ` ( O /s ( O ~QG I ) ) ) = ( +g ` ( O /s ( O ~QG I ) ) ) | 
						
							| 42 |  | eqid |  |-  ( 0g ` ( O /s ( O ~QG I ) ) ) = ( 0g ` ( O /s ( O ~QG I ) ) ) | 
						
							| 43 | 40 41 42 | grpidval |  |-  ( 0g ` ( O /s ( O ~QG I ) ) ) = ( iota e ( e e. ( Base ` ( O /s ( O ~QG I ) ) ) /\ A. x e. ( Base ` ( O /s ( O ~QG I ) ) ) ( ( e ( +g ` ( O /s ( O ~QG I ) ) ) x ) = x /\ ( x ( +g ` ( O /s ( O ~QG I ) ) ) e ) = x ) ) ) | 
						
							| 44 | 32 39 43 | 3eqtr4g |  |-  ( ph -> ( 0g ` ( oppR ` Q ) ) = ( 0g ` ( O /s ( O ~QG I ) ) ) ) |