Metamath Proof Explorer


Theorem ordtcnv

Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion ordtcnv R PosetRel ordTop R -1 = ordTop R

Proof

Step Hyp Ref Expression
1 eqid dom R = dom R
2 1 psrn R PosetRel dom R = ran R
3 2 eqcomd R PosetRel ran R = dom R
4 3 sneqd R PosetRel ran R = dom R
5 vex y V
6 vex x V
7 5 6 brcnv y R -1 x x R y
8 7 a1i R PosetRel y R -1 x x R y
9 8 notbid R PosetRel ¬ y R -1 x ¬ x R y
10 3 9 rabeqbidv R PosetRel y ran R | ¬ y R -1 x = y dom R | ¬ x R y
11 3 10 mpteq12dv R PosetRel x ran R y ran R | ¬ y R -1 x = x dom R y dom R | ¬ x R y
12 11 rneqd R PosetRel ran x ran R y ran R | ¬ y R -1 x = ran x dom R y dom R | ¬ x R y
13 6 5 brcnv x R -1 y y R x
14 13 a1i R PosetRel x R -1 y y R x
15 14 notbid R PosetRel ¬ x R -1 y ¬ y R x
16 3 15 rabeqbidv R PosetRel y ran R | ¬ x R -1 y = y dom R | ¬ y R x
17 3 16 mpteq12dv R PosetRel x ran R y ran R | ¬ x R -1 y = x dom R y dom R | ¬ y R x
18 17 rneqd R PosetRel ran x ran R y ran R | ¬ x R -1 y = ran x dom R y dom R | ¬ y R x
19 12 18 uneq12d R PosetRel ran x ran R y ran R | ¬ y R -1 x ran x ran R y ran R | ¬ x R -1 y = ran x dom R y dom R | ¬ x R y ran x dom R y dom R | ¬ y R x
20 uncom ran x dom R y dom R | ¬ x R y ran x dom R y dom R | ¬ y R x = ran x dom R y dom R | ¬ y R x ran x dom R y dom R | ¬ x R y
21 19 20 syl6eq R PosetRel ran x ran R y ran R | ¬ y R -1 x ran x ran R y ran R | ¬ x R -1 y = ran x dom R y dom R | ¬ y R x ran x dom R y dom R | ¬ x R y
22 4 21 uneq12d R PosetRel ran R ran x ran R y ran R | ¬ y R -1 x ran x ran R y ran R | ¬ x R -1 y = dom R ran x dom R y dom R | ¬ y R x ran x dom R y dom R | ¬ x R y
23 22 fveq2d R PosetRel fi ran R ran x ran R y ran R | ¬ y R -1 x ran x ran R y ran R | ¬ x R -1 y = fi dom R ran x dom R y dom R | ¬ y R x ran x dom R y dom R | ¬ x R y
24 23 fveq2d R PosetRel topGen fi ran R ran x ran R y ran R | ¬ y R -1 x ran x ran R y ran R | ¬ x R -1 y = topGen fi dom R ran x dom R y dom R | ¬ y R x ran x dom R y dom R | ¬ x R y
25 cnvps R PosetRel R -1 PosetRel
26 df-rn ran R = dom R -1
27 eqid ran x ran R y ran R | ¬ y R -1 x = ran x ran R y ran R | ¬ y R -1 x
28 eqid ran x ran R y ran R | ¬ x R -1 y = ran x ran R y ran R | ¬ x R -1 y
29 26 27 28 ordtval R -1 PosetRel ordTop R -1 = topGen fi ran R ran x ran R y ran R | ¬ y R -1 x ran x ran R y ran R | ¬ x R -1 y
30 25 29 syl R PosetRel ordTop R -1 = topGen fi ran R ran x ran R y ran R | ¬ y R -1 x ran x ran R y ran R | ¬ x R -1 y
31 eqid ran x dom R y dom R | ¬ y R x = ran x dom R y dom R | ¬ y R x
32 eqid ran x dom R y dom R | ¬ x R y = ran x dom R y dom R | ¬ x R y
33 1 31 32 ordtval R PosetRel ordTop R = topGen fi dom R ran x dom R y dom R | ¬ y R x ran x dom R y dom R | ¬ x R y
34 24 30 33 3eqtr4d R PosetRel ordTop R -1 = ordTop R