Metamath Proof Explorer


Theorem ordttopon

Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ordttopon.3 X=domR
Assertion ordttopon RVordTopRTopOnX

Proof

Step Hyp Ref Expression
1 ordttopon.3 X=domR
2 eqid ranxXyX|¬yRx=ranxXyX|¬yRx
3 eqid ranxXyX|¬xRy=ranxXyX|¬xRy
4 1 2 3 ordtval RVordTopR=topGenfiXranxXyX|¬yRxranxXyX|¬xRy
5 fibas fiXranxXyX|¬yRxranxXyX|¬xRyTopBases
6 tgtopon fiXranxXyX|¬yRxranxXyX|¬xRyTopBasestopGenfiXranxXyX|¬yRxranxXyX|¬xRyTopOnfiXranxXyX|¬yRxranxXyX|¬xRy
7 5 6 ax-mp topGenfiXranxXyX|¬yRxranxXyX|¬xRyTopOnfiXranxXyX|¬yRxranxXyX|¬xRy
8 4 7 eqeltrdi RVordTopRTopOnfiXranxXyX|¬yRxranxXyX|¬xRy
9 1 2 3 ordtuni RVX=XranxXyX|¬yRxranxXyX|¬xRy
10 dmexg RVdomRV
11 1 10 eqeltrid RVXV
12 9 11 eqeltrrd RVXranxXyX|¬yRxranxXyX|¬xRyV
13 uniexb XranxXyX|¬yRxranxXyX|¬xRyVXranxXyX|¬yRxranxXyX|¬xRyV
14 12 13 sylibr RVXranxXyX|¬yRxranxXyX|¬xRyV
15 fiuni XranxXyX|¬yRxranxXyX|¬xRyVXranxXyX|¬yRxranxXyX|¬xRy=fiXranxXyX|¬yRxranxXyX|¬xRy
16 14 15 syl RVXranxXyX|¬yRxranxXyX|¬xRy=fiXranxXyX|¬yRxranxXyX|¬xRy
17 9 16 eqtrd RVX=fiXranxXyX|¬yRxranxXyX|¬xRy
18 17 fveq2d RVTopOnX=TopOnfiXranxXyX|¬yRxranxXyX|¬xRy
19 8 18 eleqtrrd RVordTopRTopOnX