Metamath Proof Explorer


Theorem otsndisj

Description: The singletons consisting of ordered triples which have distinct third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018)

Ref Expression
Assertion otsndisj AXBYDisjcVABc

Proof

Step Hyp Ref Expression
1 otthg AXBYcVABc=ABdA=AB=Bc=d
2 1 3expa AXBYcVABc=ABdA=AB=Bc=d
3 simp3 A=AB=Bc=dc=d
4 2 3 biimtrdi AXBYcVABc=ABdc=d
5 4 con3rr3 ¬c=dAXBYcV¬ABc=ABd
6 5 imp ¬c=dAXBYcV¬ABc=ABd
7 6 neqned ¬c=dAXBYcVABcABd
8 disjsn2 ABcABdABcABd=
9 7 8 syl ¬c=dAXBYcVABcABd=
10 9 expcom AXBYcV¬c=dABcABd=
11 10 orrd AXBYcVc=dABcABd=
12 11 adantrr AXBYcVdVc=dABcABd=
13 12 ralrimivva AXBYcVdVc=dABcABd=
14 oteq3 c=dABc=ABd
15 14 sneqd c=dABc=ABd
16 15 disjor DisjcVABccVdVc=dABcABd=
17 13 16 sylibr AXBYDisjcVABc