Metamath Proof Explorer


Theorem ovn0val

Description: The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovn0val.1 φ A
Assertion ovn0val φ voln* A = 0

Proof

Step Hyp Ref Expression
1 ovn0val.1 φ A
2 0fin Fin
3 2 a1i φ Fin
4 eqid z * | i 2 A j k . i j k z = sum^ j k vol . i j k = z * | i 2 A j k . i j k z = sum^ j k vol . i j k
5 3 1 4 ovnval2 φ voln* A = if = 0 sup z * | i 2 A j k . i j k z = sum^ j k vol . i j k * <
6 eqid =
7 iftrue = if = 0 sup z * | i 2 A j k . i j k z = sum^ j k vol . i j k * < = 0
8 6 7 ax-mp if = 0 sup z * | i 2 A j k . i j k z = sum^ j k vol . i j k * < = 0
9 8 a1i φ if = 0 sup z * | i 2 A j k . i j k z = sum^ j k vol . i j k * < = 0
10 5 9 eqtrd φ voln* A = 0