Metamath Proof Explorer


Theorem ovn0val

Description: The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovn0val.1 φA
Assertion ovn0val φvoln*A=0

Proof

Step Hyp Ref Expression
1 ovn0val.1 φA
2 0fin Fin
3 2 a1i φFin
4 eqid z*|i2Ajk.ijkz=sum^jkvol.ijk=z*|i2Ajk.ijkz=sum^jkvol.ijk
5 3 1 4 ovnval2 φvoln*A=if=0supz*|i2Ajk.ijkz=sum^jkvol.ijk*<
6 eqid =
7 iftrue =if=0supz*|i2Ajk.ijkz=sum^jkvol.ijk*<=0
8 6 7 ax-mp if=0supz*|i2Ajk.ijkz=sum^jkvol.ijk*<=0
9 8 a1i φif=0supz*|i2Ajk.ijkz=sum^jkvol.ijk*<=0
10 5 9 eqtrd φvoln*A=0