Metamath Proof Explorer


Theorem ovnovol

Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnovol.a φAV
ovnovol.b φB
Assertion ovnovol φvoln*ABA=vol*B

Proof

Step Hyp Ref Expression
1 ovnovol.a φAV
2 ovnovol.b φB
3 eqid z*|i2ABAjkA.ijkz=sum^jkAvol.ijk=z*|i2ABAjkA.ijkz=sum^jkAvol.ijk
4 eqeq1 w=zw=sum^vol.fz=sum^vol.f
5 4 anbi2d w=zBran.fw=sum^vol.fBran.fz=sum^vol.f
6 5 rexbidv w=zf2Bran.fw=sum^vol.ff2Bran.fz=sum^vol.f
7 6 cbvrabv w*|f2Bran.fw=sum^vol.f=z*|f2Bran.fz=sum^vol.f
8 1 2 3 7 ovnovollem3 φvoln*ABA=vol*B