Metamath Proof Explorer


Theorem paddasslem13

Description: Lemma for paddass . The case when r .<_ ( x .\/ y ) . (Unlike the proof in Maeda and Maeda, we don't need x =/= y .) (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses paddasslem.l ˙=K
paddasslem.j ˙=joinK
paddasslem.a A=AtomsK
paddasslem.p +˙=+𝑃K
Assertion paddasslem13 KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rpX+˙Y+˙Z

Proof

Step Hyp Ref Expression
1 paddasslem.l ˙=K
2 paddasslem.j ˙=joinK
3 paddasslem.a A=AtomsK
4 paddasslem.p +˙=+𝑃K
5 simpl1l KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rKHL
6 simpl21 KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rXA
7 simpl22 KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rYA
8 3 4 paddssat KHLXAYAX+˙YA
9 5 6 7 8 syl3anc KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rX+˙YA
10 simpl23 KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rZA
11 3 4 sspadd1 KHLX+˙YAZAX+˙YX+˙Y+˙Z
12 5 9 10 11 syl3anc KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rX+˙YX+˙Y+˙Z
13 5 hllatd KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rKLat
14 simprll KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rxX
15 simprlr KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙ryY
16 simpl3l KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rpA
17 eqid BaseK=BaseK
18 17 3 atbase pApBaseK
19 16 18 syl KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rpBaseK
20 6 14 sseldd KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rxA
21 17 3 atbase xAxBaseK
22 20 21 syl KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rxBaseK
23 simpl3r KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rrA
24 17 3 atbase rArBaseK
25 23 24 syl KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rrBaseK
26 17 2 latjcl KLatxBaseKrBaseKx˙rBaseK
27 13 22 25 26 syl3anc KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rx˙rBaseK
28 7 15 sseldd KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙ryA
29 17 3 atbase yAyBaseK
30 28 29 syl KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙ryBaseK
31 17 2 latjcl KLatxBaseKyBaseKx˙yBaseK
32 13 22 30 31 syl3anc KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rx˙yBaseK
33 simprrr KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rp˙x˙r
34 17 1 2 latlej1 KLatxBaseKyBaseKx˙x˙y
35 13 22 30 34 syl3anc KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rx˙x˙y
36 simprrl KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rr˙x˙y
37 17 1 2 latjle12 KLatxBaseKrBaseKx˙yBaseKx˙x˙yr˙x˙yx˙r˙x˙y
38 13 22 25 32 37 syl13anc KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rx˙x˙yr˙x˙yx˙r˙x˙y
39 35 36 38 mpbi2and KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rx˙r˙x˙y
40 17 1 13 19 27 32 33 39 lattrd KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rp˙x˙y
41 1 2 3 4 elpaddri KLatXAYAxXyYpAp˙x˙ypX+˙Y
42 13 6 7 14 15 16 40 41 syl322anc KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rpX+˙Y
43 12 42 sseldd KHLpzXAYAZApArAxXyYr˙x˙yp˙x˙rpX+˙Y+˙Z