Description: Lemma for paddass . The case when r .<_ ( x .\/ y ) . (Unlike the proof in Maeda and Maeda, we don't need x =/= y .) (Contributed by NM, 11-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | paddasslem.l | |
|
paddasslem.j | |
||
paddasslem.a | |
||
paddasslem.p | |
||
Assertion | paddasslem13 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddasslem.l | |
|
2 | paddasslem.j | |
|
3 | paddasslem.a | |
|
4 | paddasslem.p | |
|
5 | simpl1l | |
|
6 | simpl21 | |
|
7 | simpl22 | |
|
8 | 3 4 | paddssat | |
9 | 5 6 7 8 | syl3anc | |
10 | simpl23 | |
|
11 | 3 4 | sspadd1 | |
12 | 5 9 10 11 | syl3anc | |
13 | 5 | hllatd | |
14 | simprll | |
|
15 | simprlr | |
|
16 | simpl3l | |
|
17 | eqid | |
|
18 | 17 3 | atbase | |
19 | 16 18 | syl | |
20 | 6 14 | sseldd | |
21 | 17 3 | atbase | |
22 | 20 21 | syl | |
23 | simpl3r | |
|
24 | 17 3 | atbase | |
25 | 23 24 | syl | |
26 | 17 2 | latjcl | |
27 | 13 22 25 26 | syl3anc | |
28 | 7 15 | sseldd | |
29 | 17 3 | atbase | |
30 | 28 29 | syl | |
31 | 17 2 | latjcl | |
32 | 13 22 30 31 | syl3anc | |
33 | simprrr | |
|
34 | 17 1 2 | latlej1 | |
35 | 13 22 30 34 | syl3anc | |
36 | simprrl | |
|
37 | 17 1 2 | latjle12 | |
38 | 13 22 25 32 37 | syl13anc | |
39 | 35 36 38 | mpbi2and | |
40 | 17 1 13 19 27 32 33 39 | lattrd | |
41 | 1 2 3 4 | elpaddri | |
42 | 13 6 7 14 15 16 40 41 | syl322anc | |
43 | 12 42 | sseldd | |