Metamath Proof Explorer


Theorem pclvalN

Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfval.a A=AtomsK
pclfval.s S=PSubSpK
pclfval.c U=PClK
Assertion pclvalN KVXAUX=yS|Xy

Proof

Step Hyp Ref Expression
1 pclfval.a A=AtomsK
2 pclfval.s S=PSubSpK
3 pclfval.c U=PClK
4 1 fvexi AV
5 4 elpw2 X𝒫AXA
6 1 2 3 pclfvalN KVU=x𝒫AyS|xy
7 6 fveq1d KVUX=x𝒫AyS|xyX
8 7 adantr KVX𝒫AUX=x𝒫AyS|xyX
9 eqid x𝒫AyS|xy=x𝒫AyS|xy
10 sseq1 x=XxyXy
11 10 rabbidv x=XyS|xy=yS|Xy
12 11 inteqd x=XyS|xy=yS|Xy
13 simpr KVX𝒫AX𝒫A
14 elpwi X𝒫AXA
15 14 adantl KVX𝒫AXA
16 1 2 atpsubN KVAS
17 16 adantr KVX𝒫AAS
18 sseq2 y=AXyXA
19 18 elrab3 ASAyS|XyXA
20 17 19 syl KVX𝒫AAyS|XyXA
21 15 20 mpbird KVX𝒫AAyS|Xy
22 21 ne0d KVX𝒫AyS|Xy
23 intex yS|XyyS|XyV
24 22 23 sylib KVX𝒫AyS|XyV
25 9 12 13 24 fvmptd3 KVX𝒫Ax𝒫AyS|xyX=yS|Xy
26 8 25 eqtrd KVX𝒫AUX=yS|Xy
27 5 26 sylan2br KVXAUX=yS|Xy