Metamath Proof Explorer


Theorem pcmptcl

Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypotheses pcmpt.1 F=nifnnA1
pcmpt.2 φnA0
Assertion pcmptcl φF:seq1×F:

Proof

Step Hyp Ref Expression
1 pcmpt.1 F=nifnnA1
2 pcmpt.2 φnA0
3 pm2.27 nnA0A0
4 iftrue nifnnA1=nA
5 4 adantr nA0ifnnA1=nA
6 prmnn nn
7 nnexpcl nA0nA
8 6 7 sylan nA0nA
9 5 8 eqeltrd nA0ifnnA1
10 9 ex nA0ifnnA1
11 3 10 syld nnA0ifnnA1
12 iffalse ¬nifnnA1=1
13 1nn 1
14 12 13 eqeltrdi ¬nifnnA1
15 14 a1d ¬nnA0ifnnA1
16 11 15 pm2.61i nA0ifnnA1
17 16 a1d nA0nifnnA1
18 17 ralimi2 nA0nifnnA1
19 2 18 syl φnifnnA1
20 1 fmpt nifnnA1F:
21 19 20 sylib φF:
22 nnuz =1
23 1zzd φ1
24 21 ffvelcdmda φkFk
25 nnmulcl kpkp
26 25 adantl φkpkp
27 22 23 24 26 seqf φseq1×F:
28 21 27 jca φF:seq1×F: