Metamath Proof Explorer


Theorem pellfund14gap

Description: There are no solutions between 1 and the fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pellfund14gap DAPell14QRD1AA<PellFundDA=1

Proof

Step Hyp Ref Expression
1 simp3r DAPell14QRD1AA<PellFundDA<PellFundD
2 pell14qrre DAPell14QRDA
3 2 3adant3 DAPell14QRD1AA<PellFundDA
4 pellfundre DPellFundD
5 4 3ad2ant1 DAPell14QRD1AA<PellFundDPellFundD
6 3 5 ltnled DAPell14QRD1AA<PellFundDA<PellFundD¬PellFundDA
7 1 6 mpbid DAPell14QRD1AA<PellFundD¬PellFundDA
8 simpl1 DAPell14QRD1AA<PellFundD1<AD
9 simpl2 DAPell14QRD1AA<PellFundD1<AAPell14QRD
10 simpr DAPell14QRD1AA<PellFundD1<A1<A
11 pellfundlb DAPell14QRD1<APellFundDA
12 8 9 10 11 syl3anc DAPell14QRD1AA<PellFundD1<APellFundDA
13 7 12 mtand DAPell14QRD1AA<PellFundD¬1<A
14 simp3l DAPell14QRD1AA<PellFundD1A
15 1re 1
16 leloe 1A1A1<A1=A
17 15 3 16 sylancr DAPell14QRD1AA<PellFundD1A1<A1=A
18 14 17 mpbid DAPell14QRD1AA<PellFundD1<A1=A
19 orel1 ¬1<A1<A1=A1=A
20 13 18 19 sylc DAPell14QRD1AA<PellFundD1=A
21 20 eqcomd DAPell14QRD1AA<PellFundDA=1