Metamath Proof Explorer


Theorem pellfundgt1

Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfundgt1 D1<PellFundD

Proof

Step Hyp Ref Expression
1 1red D1
2 eldifi DD
3 2 peano2nnd DD+1
4 3 nnrpd DD+1+
5 4 rpsqrtcld DD+1+
6 5 rpred DD+1
7 2 nnrpd DD+
8 7 rpsqrtcld DD+
9 8 rpred DD
10 6 9 readdcld DD+1+D
11 pellfundre DPellFundD
12 sqrt1 1=1
13 12 1 eqeltrid D1
14 13 13 readdcld D1+1
15 1lt2 1<2
16 12 12 oveq12i 1+1=1+1
17 1p1e2 1+1=2
18 16 17 eqtri 1+1=2
19 15 18 breqtrri 1<1+1
20 19 a1i D1<1+1
21 3 nnge1d D1D+1
22 0le1 01
23 22 a1i D01
24 2 nnred DD
25 peano2re DD+1
26 24 25 syl DD+1
27 3 nnnn0d DD+10
28 27 nn0ge0d D0D+1
29 1 23 26 28 sqrtled D1D+11D+1
30 21 29 mpbid D1D+1
31 2 nnge1d D1D
32 2 nnnn0d DD0
33 32 nn0ge0d D0D
34 1 23 24 33 sqrtled D1D1D
35 31 34 mpbid D1D
36 13 13 6 9 30 35 le2addd D1+1D+1+D
37 1 14 10 20 36 ltletrd D1<D+1+D
38 pellfundge DD+1+DPellFundD
39 1 10 11 37 38 ltletrd D1<PellFundD