Metamath Proof Explorer


Theorem pf1id

Description: The identity is a polynomial function. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypotheses pf1const.b B=BaseR
pf1const.q Q=raneval1R
Assertion pf1id RCRingIBQ

Proof

Step Hyp Ref Expression
1 pf1const.b B=BaseR
2 pf1const.q Q=raneval1R
3 eqid eval1R=eval1R
4 eqid var1R=var1R
5 3 4 1 evl1var RCRingeval1Rvar1R=IB
6 eqid Poly1R=Poly1R
7 eqid R𝑠B=R𝑠B
8 3 6 7 1 evl1rhm RCRingeval1RPoly1RRingHomR𝑠B
9 eqid BasePoly1R=BasePoly1R
10 eqid BaseR𝑠B=BaseR𝑠B
11 9 10 rhmf eval1RPoly1RRingHomR𝑠Beval1R:BasePoly1RBaseR𝑠B
12 ffn eval1R:BasePoly1RBaseR𝑠Beval1RFnBasePoly1R
13 8 11 12 3syl RCRingeval1RFnBasePoly1R
14 crngring RCRingRRing
15 4 6 9 vr1cl RRingvar1RBasePoly1R
16 14 15 syl RCRingvar1RBasePoly1R
17 fnfvelrn eval1RFnBasePoly1Rvar1RBasePoly1Reval1Rvar1Rraneval1R
18 13 16 17 syl2anc RCRingeval1Rvar1Rraneval1R
19 5 18 eqeltrrd RCRingIBraneval1R
20 19 2 eleqtrrdi RCRingIBQ