Metamath Proof Explorer


Theorem pf1rcl

Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypothesis pf1rcl.q Q=raneval1R
Assertion pf1rcl XQRCRing

Proof

Step Hyp Ref Expression
1 pf1rcl.q Q=raneval1R
2 n0i XQ¬Q=
3 eqid eval1R=eval1R
4 eqid 1𝑜evalR=1𝑜evalR
5 eqid BaseR=BaseR
6 3 4 5 evl1fval eval1R=xBaseRBaseR1𝑜xyBaseR1𝑜×y1𝑜evalR
7 6 rneqi raneval1R=ranxBaseRBaseR1𝑜xyBaseR1𝑜×y1𝑜evalR
8 rnco2 ranxBaseRBaseR1𝑜xyBaseR1𝑜×y1𝑜evalR=xBaseRBaseR1𝑜xyBaseR1𝑜×yran1𝑜evalR
9 1 7 8 3eqtri Q=xBaseRBaseR1𝑜xyBaseR1𝑜×yran1𝑜evalR
10 inss2 domxBaseRBaseR1𝑜xyBaseR1𝑜×yran1𝑜evalRran1𝑜evalR
11 neq0 ¬ran1𝑜evalR=xxran1𝑜evalR
12 4 5 evlval 1𝑜evalR=1𝑜evalSubRBaseR
13 12 rneqi ran1𝑜evalR=ran1𝑜evalSubRBaseR
14 13 mpfrcl xran1𝑜evalR1𝑜VRCRingBaseRSubRingR
15 14 simp2d xran1𝑜evalRRCRing
16 15 exlimiv xxran1𝑜evalRRCRing
17 11 16 sylbi ¬ran1𝑜evalR=RCRing
18 17 con1i ¬RCRingran1𝑜evalR=
19 sseq0 domxBaseRBaseR1𝑜xyBaseR1𝑜×yran1𝑜evalRran1𝑜evalRran1𝑜evalR=domxBaseRBaseR1𝑜xyBaseR1𝑜×yran1𝑜evalR=
20 10 18 19 sylancr ¬RCRingdomxBaseRBaseR1𝑜xyBaseR1𝑜×yran1𝑜evalR=
21 imadisj xBaseRBaseR1𝑜xyBaseR1𝑜×yran1𝑜evalR=domxBaseRBaseR1𝑜xyBaseR1𝑜×yran1𝑜evalR=
22 20 21 sylibr ¬RCRingxBaseRBaseR1𝑜xyBaseR1𝑜×yran1𝑜evalR=
23 9 22 eqtrid ¬RCRingQ=
24 2 23 nsyl2 XQRCRing