Metamath Proof Explorer


Theorem pgpfi2

Description: Alternate version of pgpfi . (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypothesis pgpfi.1 X=BaseG
Assertion pgpfi2 GGrpXFinPpGrpGPX=PPpCntX

Proof

Step Hyp Ref Expression
1 pgpfi.1 X=BaseG
2 1 pgpfi GGrpXFinPpGrpGPn0X=Pn
3 id PP
4 1 grpbn0 GGrpX
5 hashnncl XFinXX
6 4 5 syl5ibrcom GGrpXFinX
7 6 imp GGrpXFinX
8 pcprmpw PXn0X=PnX=PPpCntX
9 3 7 8 syl2anr GGrpXFinPn0X=PnX=PPpCntX
10 9 pm5.32da GGrpXFinPn0X=PnPX=PPpCntX
11 2 10 bitrd GGrpXFinPpGrpGPX=PPpCntX