Metamath Proof Explorer


Theorem php2OLD

Description: Obsolete version of php2 as of 20-Nov-2024. (Contributed by NM, 31-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion php2OLD AωBABA

Proof

Step Hyp Ref Expression
1 eleq1 x=AxωAω
2 psseq2 x=ABxBA
3 1 2 anbi12d x=AxωBxAωBA
4 breq2 x=ABxBA
5 3 4 imbi12d x=AxωBxBxAωBABA
6 vex xV
7 pssss BxBx
8 ssdomg xVBxBx
9 6 7 8 mpsyl BxBx
10 9 adantl xωBxBx
11 php xωBx¬xB
12 ensym BxxB
13 11 12 nsyl xωBx¬Bx
14 brsdom BxBx¬Bx
15 10 13 14 sylanbrc xωBxBx
16 5 15 vtoclg AωAωBABA
17 16 anabsi5 AωBABA