Metamath Proof Explorer


Theorem phssip

Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008) (Revised by AV, 19-Oct-2021)

Ref Expression
Hypotheses phssip.x โŠขX=Wโ†พ๐‘ U
phssip.s โŠขS=LSubSpโกW
phssip.i โŠขยทห™=โ‹…ifโกW
phssip.p โŠขP=โ‹…ifโกX
Assertion phssip โŠขWโˆˆPreHilโˆงUโˆˆSโ†’P=ยทห™โ†พUร—U

Proof

Step Hyp Ref Expression
1 phssip.x โŠขX=Wโ†พ๐‘ U
2 phssip.s โŠขS=LSubSpโกW
3 phssip.i โŠขยทห™=โ‹…ifโกW
4 phssip.p โŠขP=โ‹…ifโกX
5 eqid โŠขBaseX=BaseX
6 eqid โŠขโ‹…๐‘–โกX=โ‹…๐‘–โกX
7 5 6 4 ipffval โŠขP=xโˆˆBaseX,yโˆˆBaseXโŸผxโ‹…๐‘–โกXy
8 phllmod โŠขWโˆˆPreHilโ†’WโˆˆLMod
9 2 lsssubg โŠขWโˆˆLModโˆงUโˆˆSโ†’UโˆˆSubGrpโกW
10 8 9 sylan โŠขWโˆˆPreHilโˆงUโˆˆSโ†’UโˆˆSubGrpโกW
11 1 subgbas โŠขUโˆˆSubGrpโกWโ†’U=BaseX
12 10 11 syl โŠขWโˆˆPreHilโˆงUโˆˆSโ†’U=BaseX
13 eqidd โŠขWโˆˆPreHilโˆงUโˆˆSโ†’xโ‹…๐‘–โกWy=xโ‹…๐‘–โกWy
14 12 12 13 mpoeq123dv โŠขWโˆˆPreHilโˆงUโˆˆSโ†’xโˆˆU,yโˆˆUโŸผxโ‹…๐‘–โกWy=xโˆˆBaseX,yโˆˆBaseXโŸผxโ‹…๐‘–โกWy
15 eqid โŠขBaseW=BaseW
16 15 subgss โŠขUโˆˆSubGrpโกWโ†’UโŠ†BaseW
17 10 16 syl โŠขWโˆˆPreHilโˆงUโˆˆSโ†’UโŠ†BaseW
18 resmpo โŠขUโŠ†BaseWโˆงUโŠ†BaseWโ†’xโˆˆBaseW,yโˆˆBaseWโŸผxโ‹…๐‘–โกWyโ†พUร—U=xโˆˆU,yโˆˆUโŸผxโ‹…๐‘–โกWy
19 17 17 18 syl2anc โŠขWโˆˆPreHilโˆงUโˆˆSโ†’xโˆˆBaseW,yโˆˆBaseWโŸผxโ‹…๐‘–โกWyโ†พUร—U=xโˆˆU,yโˆˆUโŸผxโ‹…๐‘–โกWy
20 eqid โŠขโ‹…๐‘–โกW=โ‹…๐‘–โกW
21 1 20 6 ssipeq โŠขUโˆˆSโ†’โ‹…๐‘–โกX=โ‹…๐‘–โกW
22 21 adantl โŠขWโˆˆPreHilโˆงUโˆˆSโ†’โ‹…๐‘–โกX=โ‹…๐‘–โกW
23 22 oveqd โŠขWโˆˆPreHilโˆงUโˆˆSโ†’xโ‹…๐‘–โกXy=xโ‹…๐‘–โกWy
24 23 mpoeq3dv โŠขWโˆˆPreHilโˆงUโˆˆSโ†’xโˆˆBaseX,yโˆˆBaseXโŸผxโ‹…๐‘–โกXy=xโˆˆBaseX,yโˆˆBaseXโŸผxโ‹…๐‘–โกWy
25 14 19 24 3eqtr4rd โŠขWโˆˆPreHilโˆงUโˆˆSโ†’xโˆˆBaseX,yโˆˆBaseXโŸผxโ‹…๐‘–โกXy=xโˆˆBaseW,yโˆˆBaseWโŸผxโ‹…๐‘–โกWyโ†พUร—U
26 7 25 eqtrid โŠขWโˆˆPreHilโˆงUโˆˆSโ†’P=xโˆˆBaseW,yโˆˆBaseWโŸผxโ‹…๐‘–โกWyโ†พUร—U
27 15 20 3 ipffval โŠขยทห™=xโˆˆBaseW,yโˆˆBaseWโŸผxโ‹…๐‘–โกWy
28 27 a1i โŠขWโˆˆPreHilโˆงUโˆˆSโ†’ยทห™=xโˆˆBaseW,yโˆˆBaseWโŸผxโ‹…๐‘–โกWy
29 28 reseq1d โŠขWโˆˆPreHilโˆงUโˆˆSโ†’ยทห™โ†พUร—U=xโˆˆBaseW,yโˆˆBaseWโŸผxโ‹…๐‘–โกWyโ†พUร—U
30 26 29 eqtr4d โŠขWโˆˆPreHilโˆงUโˆˆSโ†’P=ยทห™โ†พUร—U