| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phssip.x |  | 
						
							| 2 |  | phssip.s |  | 
						
							| 3 |  | phssip.i |  | 
						
							| 4 |  | phssip.p |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 6 4 | ipffval |  | 
						
							| 8 |  | phllmod |  | 
						
							| 9 | 2 | lsssubg |  | 
						
							| 10 | 8 9 | sylan |  | 
						
							| 11 | 1 | subgbas |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | eqidd |  | 
						
							| 14 | 12 12 13 | mpoeq123dv |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | subgss |  | 
						
							| 17 | 10 16 | syl |  | 
						
							| 18 |  | resmpo |  | 
						
							| 19 | 17 17 18 | syl2anc |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 1 20 6 | ssipeq |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 | 22 | oveqd |  | 
						
							| 24 | 23 | mpoeq3dv |  | 
						
							| 25 | 14 19 24 | 3eqtr4rd |  | 
						
							| 26 | 7 25 | eqtrid |  | 
						
							| 27 | 15 20 3 | ipffval |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 | 28 | reseq1d |  | 
						
							| 30 | 26 29 | eqtr4d |  |