Metamath Proof Explorer


Theorem phssip

Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008) (Revised by AV, 19-Oct-2021)

Ref Expression
Hypotheses phssip.x X = W 𝑠 U
phssip.s S = LSubSp W
phssip.i · ˙ = if W
phssip.p P = if X
Assertion phssip W PreHil U S P = · ˙ U × U

Proof

Step Hyp Ref Expression
1 phssip.x X = W 𝑠 U
2 phssip.s S = LSubSp W
3 phssip.i · ˙ = if W
4 phssip.p P = if X
5 eqid Base X = Base X
6 eqid 𝑖 X = 𝑖 X
7 5 6 4 ipffval P = x Base X , y Base X x 𝑖 X y
8 phllmod W PreHil W LMod
9 2 lsssubg W LMod U S U SubGrp W
10 8 9 sylan W PreHil U S U SubGrp W
11 1 subgbas U SubGrp W U = Base X
12 10 11 syl W PreHil U S U = Base X
13 eqidd W PreHil U S x 𝑖 W y = x 𝑖 W y
14 12 12 13 mpoeq123dv W PreHil U S x U , y U x 𝑖 W y = x Base X , y Base X x 𝑖 W y
15 eqid Base W = Base W
16 15 subgss U SubGrp W U Base W
17 10 16 syl W PreHil U S U Base W
18 resmpo U Base W U Base W x Base W , y Base W x 𝑖 W y U × U = x U , y U x 𝑖 W y
19 17 17 18 syl2anc W PreHil U S x Base W , y Base W x 𝑖 W y U × U = x U , y U x 𝑖 W y
20 eqid 𝑖 W = 𝑖 W
21 1 20 6 ssipeq U S 𝑖 X = 𝑖 W
22 21 adantl W PreHil U S 𝑖 X = 𝑖 W
23 22 oveqd W PreHil U S x 𝑖 X y = x 𝑖 W y
24 23 mpoeq3dv W PreHil U S x Base X , y Base X x 𝑖 X y = x Base X , y Base X x 𝑖 W y
25 14 19 24 3eqtr4rd W PreHil U S x Base X , y Base X x 𝑖 X y = x Base W , y Base W x 𝑖 W y U × U
26 7 25 syl5eq W PreHil U S P = x Base W , y Base W x 𝑖 W y U × U
27 15 20 3 ipffval · ˙ = x Base W , y Base W x 𝑖 W y
28 27 a1i W PreHil U S · ˙ = x Base W , y Base W x 𝑖 W y
29 28 reseq1d W PreHil U S · ˙ U × U = x Base W , y Base W x 𝑖 W y U × U
30 26 29 eqtr4d W PreHil U S P = · ˙ U × U