Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008) (Revised by AV, 19-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phssip.x | |
|
phssip.s | |
||
phssip.i | |
||
phssip.p | |
||
Assertion | phssip | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phssip.x | |
|
2 | phssip.s | |
|
3 | phssip.i | |
|
4 | phssip.p | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 4 | ipffval | |
8 | phllmod | |
|
9 | 2 | lsssubg | |
10 | 8 9 | sylan | |
11 | 1 | subgbas | |
12 | 10 11 | syl | |
13 | eqidd | |
|
14 | 12 12 13 | mpoeq123dv | |
15 | eqid | |
|
16 | 15 | subgss | |
17 | 10 16 | syl | |
18 | resmpo | |
|
19 | 17 17 18 | syl2anc | |
20 | eqid | |
|
21 | 1 20 6 | ssipeq | |
22 | 21 | adantl | |
23 | 22 | oveqd | |
24 | 23 | mpoeq3dv | |
25 | 14 19 24 | 3eqtr4rd | |
26 | 7 25 | eqtrid | |
27 | 15 20 3 | ipffval | |
28 | 27 | a1i | |
29 | 28 | reseq1d | |
30 | 26 29 | eqtr4d | |