Metamath Proof Explorer


Theorem pj1lid

Description: The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a + ˙ = + G
pj1eu.s ˙ = LSSum G
pj1eu.o 0 ˙ = 0 G
pj1eu.z Z = Cntz G
pj1eu.2 φ T SubGrp G
pj1eu.3 φ U SubGrp G
pj1eu.4 φ T U = 0 ˙
pj1eu.5 φ T Z U
pj1f.p P = proj 1 G
Assertion pj1lid φ X T T P U X = X

Proof

Step Hyp Ref Expression
1 pj1eu.a + ˙ = + G
2 pj1eu.s ˙ = LSSum G
3 pj1eu.o 0 ˙ = 0 G
4 pj1eu.z Z = Cntz G
5 pj1eu.2 φ T SubGrp G
6 pj1eu.3 φ U SubGrp G
7 pj1eu.4 φ T U = 0 ˙
8 pj1eu.5 φ T Z U
9 pj1f.p P = proj 1 G
10 5 adantr φ X T T SubGrp G
11 subgrcl T SubGrp G G Grp
12 10 11 syl φ X T G Grp
13 eqid Base G = Base G
14 13 subgss T SubGrp G T Base G
15 5 14 syl φ T Base G
16 15 sselda φ X T X Base G
17 13 1 3 grprid G Grp X Base G X + ˙ 0 ˙ = X
18 12 16 17 syl2anc φ X T X + ˙ 0 ˙ = X
19 18 eqcomd φ X T X = X + ˙ 0 ˙
20 6 adantr φ X T U SubGrp G
21 7 adantr φ X T T U = 0 ˙
22 8 adantr φ X T T Z U
23 2 lsmub1 T SubGrp G U SubGrp G T T ˙ U
24 5 6 23 syl2anc φ T T ˙ U
25 24 sselda φ X T X T ˙ U
26 simpr φ X T X T
27 3 subg0cl U SubGrp G 0 ˙ U
28 20 27 syl φ X T 0 ˙ U
29 1 2 3 4 10 20 21 22 9 25 26 28 pj1eq φ X T X = X + ˙ 0 ˙ T P U X = X U P T X = 0 ˙
30 19 29 mpbid φ X T T P U X = X U P T X = 0 ˙
31 30 simpld φ X T T P U X = X