Metamath Proof Explorer


Theorem pjcji

Description: The projection on a subspace join is the sum of the projections. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 HC
pjidm.2 A
pjsslem.1 GC
Assertion pjcji HGprojHGA=projHA+projGA

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 pjidm.2 A
3 pjsslem.1 GC
4 3 choccli GC
5 1 2 4 pjssmii HGprojGA-projHA=projGHA
6 5 oveq2d HGA-projGA-projHA=A-projGHA
7 3 2 pjpoi projGA=A-projGA
8 7 oveq2i projHA+projGA=projHA+A-projGA
9 4 2 pjhclii projGA
10 1 2 pjhclii projHA
11 9 10 hvnegdii -1projGA-projHA=projHA-projGA
12 11 oveq2i A+-1projGA-projHA=A+projHA-projGA
13 hvaddsub12 projHAAprojGAprojHA+A-projGA=A+projHA-projGA
14 10 2 9 13 mp3an projHA+A-projGA=A+projHA-projGA
15 12 14 eqtr4i A+-1projGA-projHA=projHA+A-projGA
16 8 15 eqtr4i projHA+projGA=A+-1projGA-projHA
17 9 10 hvsubcli projGA-projHA
18 2 17 hvsubvali A-projGA-projHA=A+-1projGA-projHA
19 16 18 eqtr4i projHA+projGA=A-projGA-projHA
20 1 3 chjcomi HG=GH
21 3 1 chdmm4i GH=GH
22 20 21 eqtr4i HG=GH
23 22 fveq2i projHG=projGH
24 23 fveq1i projHGA=projGHA
25 1 choccli HC
26 4 25 chincli GHC
27 26 2 pjopi projGHA=A-projGHA
28 24 27 eqtri projHGA=A-projGHA
29 6 19 28 3eqtr4g HGprojHA+projGA=projHGA
30 29 eqcomd HGprojHGA=projHA+projGA