Metamath Proof Explorer


Theorem pjorthcoi

Description: Composition of projections of orthogonal subspaces. Part (i)->(iia) of Theorem 27.4 of Halmos p. 45. (Contributed by NM, 6-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 GC
pjco.2 HC
Assertion pjorthcoi GHprojGprojH=0hop

Proof

Step Hyp Ref Expression
1 pjco.1 GC
2 pjco.2 HC
3 2 pjcli xprojHxH
4 1 2 chsscon2i GHHG
5 ssel HGprojHxHprojHxG
6 4 5 sylbi GHprojHxHprojHxG
7 3 6 syl5com xGHprojHxG
8 2 pjhcli xprojHx
9 pjoc2 GCprojHxprojHxGprojGprojHx=0
10 1 8 9 sylancr xprojHxGprojGprojHx=0
11 7 10 sylibd xGHprojGprojHx=0
12 11 impcom GHxprojGprojHx=0
13 1 2 pjcoi xprojGprojHx=projGprojHx
14 13 adantl GHxprojGprojHx=projGprojHx
15 ho0val x0hopx=0
16 15 adantl GHx0hopx=0
17 12 14 16 3eqtr4d GHxprojGprojHx=0hopx
18 17 ralrimiva GHxprojGprojHx=0hopx
19 1 pjfi projG:
20 2 pjfi projH:
21 19 20 hocofi projGprojH:
22 ho0f 0hop:
23 21 22 hoeqi xprojGprojHx=0hopxprojGprojH=0hop
24 18 23 sylib GHprojGprojH=0hop