Metamath Proof Explorer


Theorem pjth

Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102 (existence part). (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014)

Ref Expression
Hypotheses pjth.v V = Base W
pjth.s ˙ = LSSum W
pjth.o O = ocv W
pjth.j J = TopOpen W
pjth.l L = LSubSp W
Assertion pjth W ℂHil U L U Clsd J U ˙ O U = V

Proof

Step Hyp Ref Expression
1 pjth.v V = Base W
2 pjth.s ˙ = LSSum W
3 pjth.o O = ocv W
4 pjth.j J = TopOpen W
5 pjth.l L = LSubSp W
6 hlphl W ℂHil W PreHil
7 6 3ad2ant1 W ℂHil U L U Clsd J W PreHil
8 phllmod W PreHil W LMod
9 7 8 syl W ℂHil U L U Clsd J W LMod
10 simp2 W ℂHil U L U Clsd J U L
11 1 5 lssss U L U V
12 11 3ad2ant2 W ℂHil U L U Clsd J U V
13 1 3 5 ocvlss W PreHil U V O U L
14 7 12 13 syl2anc W ℂHil U L U Clsd J O U L
15 5 2 lsmcl W LMod U L O U L U ˙ O U L
16 9 10 14 15 syl3anc W ℂHil U L U Clsd J U ˙ O U L
17 1 5 lssss U ˙ O U L U ˙ O U V
18 16 17 syl W ℂHil U L U Clsd J U ˙ O U V
19 eqid norm W = norm W
20 eqid + W = + W
21 eqid - W = - W
22 eqid 𝑖 W = 𝑖 W
23 simpl1 W ℂHil U L U Clsd J x V W ℂHil
24 simpl2 W ℂHil U L U Clsd J x V U L
25 simpr W ℂHil U L U Clsd J x V x V
26 simpl3 W ℂHil U L U Clsd J x V U Clsd J
27 1 19 20 21 22 5 23 24 25 4 2 3 26 pjthlem2 W ℂHil U L U Clsd J x V x U ˙ O U
28 18 27 eqelssd W ℂHil U L U Clsd J U ˙ O U = V