Metamath Proof Explorer


Theorem pjth

Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102 (existence part). (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014)

Ref Expression
Hypotheses pjth.v V=BaseW
pjth.s ˙=LSSumW
pjth.o O=ocvW
pjth.j J=TopOpenW
pjth.l L=LSubSpW
Assertion pjth WℂHilULUClsdJU˙OU=V

Proof

Step Hyp Ref Expression
1 pjth.v V=BaseW
2 pjth.s ˙=LSSumW
3 pjth.o O=ocvW
4 pjth.j J=TopOpenW
5 pjth.l L=LSubSpW
6 hlphl WℂHilWPreHil
7 6 3ad2ant1 WℂHilULUClsdJWPreHil
8 phllmod WPreHilWLMod
9 7 8 syl WℂHilULUClsdJWLMod
10 simp2 WℂHilULUClsdJUL
11 1 5 lssss ULUV
12 11 3ad2ant2 WℂHilULUClsdJUV
13 1 3 5 ocvlss WPreHilUVOUL
14 7 12 13 syl2anc WℂHilULUClsdJOUL
15 5 2 lsmcl WLModULOULU˙OUL
16 9 10 14 15 syl3anc WℂHilULUClsdJU˙OUL
17 1 5 lssss U˙OULU˙OUV
18 16 17 syl WℂHilULUClsdJU˙OUV
19 eqid normW=normW
20 eqid +W=+W
21 eqid -W=-W
22 eqid 𝑖W=𝑖W
23 simpl1 WℂHilULUClsdJxVWℂHil
24 simpl2 WℂHilULUClsdJxVUL
25 simpr WℂHilULUClsdJxVxV
26 simpl3 WℂHilULUClsdJxVUClsdJ
27 1 19 20 21 22 5 23 24 25 4 2 3 26 pjthlem2 WℂHilULUClsdJxVxU˙OU
28 18 27 eqelssd WℂHilULUClsdJU˙OU=V