Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102 (existence part). (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjth.v | |
|
pjth.s | |
||
pjth.o | |
||
pjth.j | |
||
pjth.l | |
||
Assertion | pjth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjth.v | |
|
2 | pjth.s | |
|
3 | pjth.o | |
|
4 | pjth.j | |
|
5 | pjth.l | |
|
6 | hlphl | |
|
7 | 6 | 3ad2ant1 | |
8 | phllmod | |
|
9 | 7 8 | syl | |
10 | simp2 | |
|
11 | 1 5 | lssss | |
12 | 11 | 3ad2ant2 | |
13 | 1 3 5 | ocvlss | |
14 | 7 12 13 | syl2anc | |
15 | 5 2 | lsmcl | |
16 | 9 10 14 15 | syl3anc | |
17 | 1 5 | lssss | |
18 | 16 17 | syl | |
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | simpl1 | |
|
24 | simpl2 | |
|
25 | simpr | |
|
26 | simpl3 | |
|
27 | 1 19 20 21 22 5 23 24 25 4 2 3 26 | pjthlem2 | |
28 | 18 27 | eqelssd | |