Metamath Proof Explorer


Theorem ply1divalg2

Description: Reverse the order of multiplication in ply1divalg via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1divalg.p P=Poly1R
ply1divalg.d D=deg1R
ply1divalg.b B=BaseP
ply1divalg.m -˙=-P
ply1divalg.z 0˙=0P
ply1divalg.t ˙=P
ply1divalg.r1 φRRing
ply1divalg.f φFB
ply1divalg.g1 φGB
ply1divalg.g2 φG0˙
ply1divalg.g3 φcoe1GDGU
ply1divalg.u U=UnitR
Assertion ply1divalg2 φ∃!qBDF-˙q˙G<DG

Proof

Step Hyp Ref Expression
1 ply1divalg.p P=Poly1R
2 ply1divalg.d D=deg1R
3 ply1divalg.b B=BaseP
4 ply1divalg.m -˙=-P
5 ply1divalg.z 0˙=0P
6 ply1divalg.t ˙=P
7 ply1divalg.r1 φRRing
8 ply1divalg.f φFB
9 ply1divalg.g1 φGB
10 ply1divalg.g2 φG0˙
11 ply1divalg.g3 φcoe1GDGU
12 ply1divalg.u U=UnitR
13 eqid Poly1opprR=Poly1opprR
14 eqidd BaseR=BaseR
15 eqid opprR=opprR
16 eqid BaseR=BaseR
17 15 16 opprbas BaseR=BaseopprR
18 17 a1i BaseR=BaseopprR
19 eqid +R=+R
20 15 19 oppradd +R=+opprR
21 20 oveqi q+Rr=q+opprRr
22 21 a1i qBaseRrBaseRq+Rr=q+opprRr
23 14 18 22 deg1propd deg1R=deg1opprR
24 23 mptru deg1R=deg1opprR
25 2 24 eqtri D=deg1opprR
26 1 fveq2i BaseP=BasePoly1R
27 14 18 22 ply1baspropd BasePoly1R=BasePoly1opprR
28 27 mptru BasePoly1R=BasePoly1opprR
29 26 28 eqtri BaseP=BasePoly1opprR
30 3 29 eqtri B=BasePoly1opprR
31 29 a1i BaseP=BasePoly1opprR
32 1 fveq2i +P=+Poly1R
33 14 18 22 ply1plusgpropd +Poly1R=+Poly1opprR
34 33 mptru +Poly1R=+Poly1opprR
35 32 34 eqtri +P=+Poly1opprR
36 35 a1i +P=+Poly1opprR
37 31 36 grpsubpropd -P=-Poly1opprR
38 37 mptru -P=-Poly1opprR
39 4 38 eqtri -˙=-Poly1opprR
40 3 a1i B=BaseP
41 30 a1i B=BasePoly1opprR
42 35 oveqi q+Pr=q+Poly1opprRr
43 42 a1i qBrBq+Pr=q+Poly1opprRr
44 40 41 43 grpidpropd 0P=0Poly1opprR
45 44 mptru 0P=0Poly1opprR
46 5 45 eqtri 0˙=0Poly1opprR
47 eqid Poly1opprR=Poly1opprR
48 15 opprring RRingopprRRing
49 7 48 syl φopprRRing
50 12 15 opprunit U=UnitopprR
51 13 25 30 39 46 47 49 8 9 10 11 50 ply1divalg φ∃!qBDF-˙GPoly1opprRq<DG
52 7 adantr φqBRRing
53 9 adantr φqBGB
54 simpr φqBqB
55 1 15 13 6 47 3 ply1opprmul RRingGBqBGPoly1opprRq=q˙G
56 52 53 54 55 syl3anc φqBGPoly1opprRq=q˙G
57 56 eqcomd φqBq˙G=GPoly1opprRq
58 57 oveq2d φqBF-˙q˙G=F-˙GPoly1opprRq
59 58 fveq2d φqBDF-˙q˙G=DF-˙GPoly1opprRq
60 59 breq1d φqBDF-˙q˙G<DGDF-˙GPoly1opprRq<DG
61 60 reubidva φ∃!qBDF-˙q˙G<DG∃!qBDF-˙GPoly1opprRq<DG
62 51 61 mpbird φ∃!qBDF-˙q˙G<DG