Description: Reverse the order of multiplication in ply1divalg via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1divalg.p | |
|
ply1divalg.d | |
||
ply1divalg.b | |
||
ply1divalg.m | |
||
ply1divalg.z | |
||
ply1divalg.t | |
||
ply1divalg.r1 | |
||
ply1divalg.f | |
||
ply1divalg.g1 | |
||
ply1divalg.g2 | |
||
ply1divalg.g3 | |
||
ply1divalg.u | |
||
Assertion | ply1divalg2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1divalg.p | |
|
2 | ply1divalg.d | |
|
3 | ply1divalg.b | |
|
4 | ply1divalg.m | |
|
5 | ply1divalg.z | |
|
6 | ply1divalg.t | |
|
7 | ply1divalg.r1 | |
|
8 | ply1divalg.f | |
|
9 | ply1divalg.g1 | |
|
10 | ply1divalg.g2 | |
|
11 | ply1divalg.g3 | |
|
12 | ply1divalg.u | |
|
13 | eqid | |
|
14 | eqidd | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 15 16 | opprbas | |
18 | 17 | a1i | |
19 | eqid | |
|
20 | 15 19 | oppradd | |
21 | 20 | oveqi | |
22 | 21 | a1i | |
23 | 14 18 22 | deg1propd | |
24 | 23 | mptru | |
25 | 2 24 | eqtri | |
26 | 1 | fveq2i | |
27 | 14 18 22 | ply1baspropd | |
28 | 27 | mptru | |
29 | 26 28 | eqtri | |
30 | 3 29 | eqtri | |
31 | 29 | a1i | |
32 | 1 | fveq2i | |
33 | 14 18 22 | ply1plusgpropd | |
34 | 33 | mptru | |
35 | 32 34 | eqtri | |
36 | 35 | a1i | |
37 | 31 36 | grpsubpropd | |
38 | 37 | mptru | |
39 | 4 38 | eqtri | |
40 | 3 | a1i | |
41 | 30 | a1i | |
42 | 35 | oveqi | |
43 | 42 | a1i | |
44 | 40 41 43 | grpidpropd | |
45 | 44 | mptru | |
46 | 5 45 | eqtri | |
47 | eqid | |
|
48 | 15 | opprring | |
49 | 7 48 | syl | |
50 | 12 15 | opprunit | |
51 | 13 25 30 39 46 47 49 8 9 10 11 50 | ply1divalg | |
52 | 7 | adantr | |
53 | 9 | adantr | |
54 | simpr | |
|
55 | 1 15 13 6 47 3 | ply1opprmul | |
56 | 52 53 54 55 | syl3anc | |
57 | 56 | eqcomd | |
58 | 57 | oveq2d | |
59 | 58 | fveq2d | |
60 | 59 | breq1d | |
61 | 60 | reubidva | |
62 | 51 61 | mpbird | |