Metamath Proof Explorer


Theorem ply1frcl

Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019)

Ref Expression
Hypothesis ply1frcl.q Q=ranSevalSub1R
Assertion ply1frcl XQSVR𝒫BaseS

Proof

Step Hyp Ref Expression
1 ply1frcl.q Q=ranSevalSub1R
2 ne0i XranSevalSub1RranSevalSub1R
3 2 1 eleq2s XQranSevalSub1R
4 rneq SevalSub1R=ranSevalSub1R=ran
5 rn0 ran=
6 4 5 eqtrdi SevalSub1R=ranSevalSub1R=
7 6 necon3i ranSevalSub1RSevalSub1R
8 n0 SevalSub1ReeSevalSub1R
9 df-evls1 evalSub1=sV,r𝒫BasesBases/bxbb1𝑜xyb1𝑜×y1𝑜evalSubsr
10 9 dmmpossx domevalSub1sVs×𝒫Bases
11 elfvdm eevalSub1SRSRdomevalSub1
12 df-ov SevalSub1R=evalSub1SR
13 11 12 eleq2s eSevalSub1RSRdomevalSub1
14 10 13 sselid eSevalSub1RSRsVs×𝒫Bases
15 fveq2 s=SBases=BaseS
16 15 pweqd s=S𝒫Bases=𝒫BaseS
17 16 opeliunxp2 SRsVs×𝒫BasesSVR𝒫BaseS
18 14 17 sylib eSevalSub1RSVR𝒫BaseS
19 18 exlimiv eeSevalSub1RSVR𝒫BaseS
20 8 19 sylbi SevalSub1RSVR𝒫BaseS
21 3 7 20 3syl XQSVR𝒫BaseS