Metamath Proof Explorer


Theorem ply1moncl

Description: Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses ply1moncl.p P=Poly1R
ply1moncl.x X=var1R
ply1moncl.n N=mulGrpP
ply1moncl.e ×˙=N
ply1moncl.b B=BaseP
Assertion ply1moncl RRingD0D×˙XB

Proof

Step Hyp Ref Expression
1 ply1moncl.p P=Poly1R
2 ply1moncl.x X=var1R
3 ply1moncl.n N=mulGrpP
4 ply1moncl.e ×˙=N
5 ply1moncl.b B=BaseP
6 3 5 mgpbas B=BaseN
7 1 ply1ring RRingPRing
8 3 ringmgp PRingNMnd
9 7 8 syl RRingNMnd
10 9 adantr RRingD0NMnd
11 simpr RRingD0D0
12 2 1 5 vr1cl RRingXB
13 12 adantr RRingD0XB
14 6 4 10 11 13 mulgnn0cld RRingD0D×˙XB