Metamath Proof Explorer


Theorem ply1scl1OLD

Description: Obsolete version of ply1scl1 as of 12-Mar-2025. (Contributed by Stefan O'Rear, 1-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ply1scl.p P=Poly1R
ply1scl.a A=algScP
ply1scl1.o 1˙=1R
ply1scl1.n N=1P
Assertion ply1scl1OLD RRingA1˙=N

Proof

Step Hyp Ref Expression
1 ply1scl.p P=Poly1R
2 ply1scl.a A=algScP
3 ply1scl1.o 1˙=1R
4 ply1scl1.n N=1P
5 eqid BaseR=BaseR
6 5 3 ringidcl RRing1˙BaseR
7 1 ply1sca2 IR=ScalarP
8 baseid Base=SlotBasendx
9 8 5 strfvi BaseR=BaseIR
10 eqid P=P
11 2 7 9 10 4 asclval 1˙BaseRA1˙=1˙PN
12 6 11 syl RRingA1˙=1˙PN
13 fvi RRingIR=R
14 13 fveq2d RRing1IR=1R
15 14 3 eqtr4di RRing1IR=1˙
16 15 oveq1d RRing1IRPN=1˙PN
17 1 ply1lmod RRingPLMod
18 1 ply1ring RRingPRing
19 eqid BaseP=BaseP
20 19 4 ringidcl PRingNBaseP
21 18 20 syl RRingNBaseP
22 eqid 1IR=1IR
23 19 7 10 22 lmodvs1 PLModNBaseP1IRPN=N
24 17 21 23 syl2anc RRing1IRPN=N
25 12 16 24 3eqtr2d RRingA1˙=N