Metamath Proof Explorer


Theorem plymul02

Description: Product of a polynomial with the zero polynomial. (Contributed by Thierry Arnoux, 26-Sep-2018)

Ref Expression
Assertion plymul02 F Poly S 0 𝑝 × f F = 0 𝑝

Proof

Step Hyp Ref Expression
1 plyf F Poly S F :
2 1 ffvelrnda F Poly S x F x
3 2 mul02d F Poly S x 0 F x = 0
4 3 mpteq2dva F Poly S x 0 F x = x 0
5 c0ex 0 V
6 5 fconst × 0 : 0
7 df-0p 0 𝑝 = × 0
8 7 feq1i 0 𝑝 : 0 × 0 : 0
9 6 8 mpbir 0 𝑝 : 0
10 ffn 0 𝑝 : 0 0 𝑝 Fn
11 9 10 mp1i F Poly S 0 𝑝 Fn
12 1 ffnd F Poly S F Fn
13 cnex V
14 13 a1i F Poly S V
15 inidm =
16 0pval x 0 𝑝 x = 0
17 16 adantl F Poly S x 0 𝑝 x = 0
18 eqidd F Poly S x F x = F x
19 11 12 14 14 15 17 18 offval F Poly S 0 𝑝 × f F = x 0 F x
20 fconstmpt × 0 = x 0
21 7 20 eqtri 0 𝑝 = x 0
22 21 a1i F Poly S 0 𝑝 = x 0
23 4 19 22 3eqtr4d F Poly S 0 𝑝 × f F = 0 𝑝