Metamath Proof Explorer


Theorem pm2mprngiso

Description: The transformation of polynomial matrices into polynomials over matrices is a ring isomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses pm2mpmhm.p P=Poly1R
pm2mpmhm.c C=NMatP
pm2mpmhm.a A=NMatR
pm2mpmhm.q Q=Poly1A
pm2mpmhm.t T=NpMatToMatPolyR
Assertion pm2mprngiso NFinRRingTCRingIsoQ

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p P=Poly1R
2 pm2mpmhm.c C=NMatP
3 pm2mpmhm.a A=NMatR
4 pm2mpmhm.q Q=Poly1A
5 pm2mpmhm.t T=NpMatToMatPolyR
6 1 2 3 4 5 pm2mprhm NFinRRingTCRingHomQ
7 eqid BaseC=BaseC
8 eqid Q=Q
9 eqid mulGrpQ=mulGrpQ
10 eqid var1A=var1A
11 eqid BaseQ=BaseQ
12 1 2 7 8 9 10 3 4 11 5 pm2mpf1o NFinRRingT:BaseC1-1 ontoBaseQ
13 7 11 isrim TCRingIsoQTCRingHomQT:BaseC1-1 ontoBaseQ
14 6 12 13 sylanbrc NFinRRingTCRingIsoQ