Metamath Proof Explorer


Theorem pmatcollpw3

Description: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 27-Oct-2019) (Revised by AV, 4-Dec-2019) (Proof shortened by AV, 8-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P = Poly 1 R
pmatcollpw.c C = N Mat P
pmatcollpw.b B = Base C
pmatcollpw.m ˙ = C
pmatcollpw.e × ˙ = mulGrp P
pmatcollpw.x X = var 1 R
pmatcollpw.t T = N matToPolyMat R
pmatcollpw3.a A = N Mat R
pmatcollpw3.d D = Base A
Assertion pmatcollpw3 N Fin R CRing M B f D 0 M = C n 0 n × ˙ X ˙ T f n

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P = Poly 1 R
2 pmatcollpw.c C = N Mat P
3 pmatcollpw.b B = Base C
4 pmatcollpw.m ˙ = C
5 pmatcollpw.e × ˙ = mulGrp P
6 pmatcollpw.x X = var 1 R
7 pmatcollpw.t T = N matToPolyMat R
8 pmatcollpw3.a A = N Mat R
9 pmatcollpw3.d D = Base A
10 1 2 3 4 5 6 7 pmatcollpw N Fin R CRing M B M = C n 0 n × ˙ X ˙ T M decompPMat n
11 ssid 0 0
12 0nn0 0 0
13 12 ne0ii 0
14 1 2 3 4 5 6 7 8 9 pmatcollpw3lem N Fin R CRing M B 0 0 0 M = C n 0 n × ˙ X ˙ T M decompPMat n f D 0 M = C n 0 n × ˙ X ˙ T f n
15 11 13 14 mpanr12 N Fin R CRing M B M = C n 0 n × ˙ X ˙ T M decompPMat n f D 0 M = C n 0 n × ˙ X ˙ T f n
16 10 15 mpd N Fin R CRing M B f D 0 M = C n 0 n × ˙ X ˙ T f n