Metamath Proof Explorer


Theorem pmatcollpw3

Description: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 27-Oct-2019) (Revised by AV, 4-Dec-2019) (Proof shortened by AV, 8-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P=Poly1R
pmatcollpw.c C=NMatP
pmatcollpw.b B=BaseC
pmatcollpw.m ˙=C
pmatcollpw.e ×˙=mulGrpP
pmatcollpw.x X=var1R
pmatcollpw.t T=NmatToPolyMatR
pmatcollpw3.a A=NMatR
pmatcollpw3.d D=BaseA
Assertion pmatcollpw3 NFinRCRingMBfD0M=Cn0n×˙X˙Tfn

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P=Poly1R
2 pmatcollpw.c C=NMatP
3 pmatcollpw.b B=BaseC
4 pmatcollpw.m ˙=C
5 pmatcollpw.e ×˙=mulGrpP
6 pmatcollpw.x X=var1R
7 pmatcollpw.t T=NmatToPolyMatR
8 pmatcollpw3.a A=NMatR
9 pmatcollpw3.d D=BaseA
10 1 2 3 4 5 6 7 pmatcollpw NFinRCRingMBM=Cn0n×˙X˙TMdecompPMatn
11 ssid 00
12 0nn0 00
13 12 ne0ii 0
14 1 2 3 4 5 6 7 8 9 pmatcollpw3lem NFinRCRingMB000M=Cn0n×˙X˙TMdecompPMatnfD0M=Cn0n×˙X˙Tfn
15 11 13 14 mpanr12 NFinRCRingMBM=Cn0n×˙X˙TMdecompPMatnfD0M=Cn0n×˙X˙Tfn
16 10 15 mpd NFinRCRingMBfD0M=Cn0n×˙X˙Tfn