Metamath Proof Explorer


Theorem pmtr3ncom

Description: Transpositions over sets with at least 3 elements are not commutative, see also the remark in Rotman p. 28. (Contributed by AV, 21-Mar-2019)

Ref Expression
Hypothesis pmtr3ncom.t T=pmTrspD
Assertion pmtr3ncom DV3DfranTgranTgffg

Proof

Step Hyp Ref Expression
1 pmtr3ncom.t T=pmTrspD
2 hashge3el3dif DV3DxDyDzDxyxzyz
3 simprl xDyDzDxyxzyzDV3DDV
4 prssi xDyDxyD
5 4 adantr xDyDzDxyD
6 5 ad2antrr xDyDzDxyxzyzDV3DxyD
7 simplll xDyDzDxyxzyzxD
8 simplr xDyDzDyD
9 8 adantr xDyDzDxyxzyzyD
10 simpr1 xDyDzDxyxzyzxy
11 enpr2 xDyDxyxy2𝑜
12 7 9 10 11 syl3anc xDyDzDxyxzyzxy2𝑜
13 12 adantr xDyDzDxyxzyzDV3Dxy2𝑜
14 eqid ranT=ranT
15 1 14 pmtrrn DVxyDxy2𝑜TxyranT
16 3 6 13 15 syl3anc xDyDzDxyxzyzDV3DTxyranT
17 prssi yDzDyzD
18 17 ad5ant23 xDyDzDxyxzyzDV3DyzD
19 simplr xDyDzDxyxzyzzD
20 simpr3 xDyDzDxyxzyzyz
21 enpr2 yDzDyzyz2𝑜
22 9 19 20 21 syl3anc xDyDzDxyxzyzyz2𝑜
23 22 adantr xDyDzDxyxzyzDV3Dyz2𝑜
24 1 14 pmtrrn DVyzDyz2𝑜TyzranT
25 3 18 23 24 syl3anc xDyDzDxyxzyzDV3DTyzranT
26 df-3an xDyDzDxDyDzD
27 26 biimpri xDyDzDxDyDzD
28 27 ad2antrr xDyDzDxyxzyzDV3DxDyDzD
29 simplr xDyDzDxyxzyzDV3Dxyxzyz
30 eqid Txy=Txy
31 eqid Tyz=Tyz
32 1 30 31 pmtr3ncomlem2 DVxDyDzDxyxzyzTyzTxyTxyTyz
33 3 28 29 32 syl3anc xDyDzDxyxzyzDV3DTyzTxyTxyTyz
34 coeq2 f=Txygf=gTxy
35 coeq1 f=Txyfg=Txyg
36 34 35 neeq12d f=TxygffggTxyTxyg
37 coeq1 g=TyzgTxy=TyzTxy
38 coeq2 g=TyzTxyg=TxyTyz
39 37 38 neeq12d g=TyzgTxyTxygTyzTxyTxyTyz
40 36 39 rspc2ev TxyranTTyzranTTyzTxyTxyTyzfranTgranTgffg
41 16 25 33 40 syl3anc xDyDzDxyxzyzDV3DfranTgranTgffg
42 41 exp31 xDyDzDxyxzyzDV3DfranTgranTgffg
43 42 rexlimdva xDyDzDxyxzyzDV3DfranTgranTgffg
44 43 rexlimivv xDyDzDxyxzyzDV3DfranTgranTgffg
45 2 44 mpcom DV3DfranTgranTgffg