| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtr3ncom.t |
|
| 2 |
|
hashge3el3dif |
|
| 3 |
|
simprl |
|
| 4 |
|
prssi |
|
| 5 |
4
|
adantr |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
simplll |
|
| 8 |
|
simplr |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpr1 |
|
| 11 |
|
enpr2 |
|
| 12 |
7 9 10 11
|
syl3anc |
|
| 13 |
12
|
adantr |
|
| 14 |
|
eqid |
|
| 15 |
1 14
|
pmtrrn |
|
| 16 |
3 6 13 15
|
syl3anc |
|
| 17 |
|
prssi |
|
| 18 |
17
|
ad5ant23 |
|
| 19 |
|
simplr |
|
| 20 |
|
simpr3 |
|
| 21 |
|
enpr2 |
|
| 22 |
9 19 20 21
|
syl3anc |
|
| 23 |
22
|
adantr |
|
| 24 |
1 14
|
pmtrrn |
|
| 25 |
3 18 23 24
|
syl3anc |
|
| 26 |
|
df-3an |
|
| 27 |
26
|
biimpri |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
simplr |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
1 30 31
|
pmtr3ncomlem2 |
|
| 33 |
3 28 29 32
|
syl3anc |
|
| 34 |
|
coeq2 |
|
| 35 |
|
coeq1 |
|
| 36 |
34 35
|
neeq12d |
|
| 37 |
|
coeq1 |
|
| 38 |
|
coeq2 |
|
| 39 |
37 38
|
neeq12d |
|
| 40 |
36 39
|
rspc2ev |
|
| 41 |
16 25 33 40
|
syl3anc |
|
| 42 |
41
|
exp31 |
|
| 43 |
42
|
rexlimdva |
|
| 44 |
43
|
rexlimivv |
|
| 45 |
2 44
|
mpcom |
|