Description: Transpositions over sets with at least 3 elements are not commutative, see also the remark in Rotman p. 28. (Contributed by AV, 21-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pmtr3ncom.t | |
|
Assertion | pmtr3ncom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtr3ncom.t | |
|
2 | hashge3el3dif | |
|
3 | simprl | |
|
4 | prssi | |
|
5 | 4 | adantr | |
6 | 5 | ad2antrr | |
7 | simplll | |
|
8 | simplr | |
|
9 | 8 | adantr | |
10 | simpr1 | |
|
11 | enpr2 | |
|
12 | 7 9 10 11 | syl3anc | |
13 | 12 | adantr | |
14 | eqid | |
|
15 | 1 14 | pmtrrn | |
16 | 3 6 13 15 | syl3anc | |
17 | prssi | |
|
18 | 17 | ad5ant23 | |
19 | simplr | |
|
20 | simpr3 | |
|
21 | enpr2 | |
|
22 | 9 19 20 21 | syl3anc | |
23 | 22 | adantr | |
24 | 1 14 | pmtrrn | |
25 | 3 18 23 24 | syl3anc | |
26 | df-3an | |
|
27 | 26 | biimpri | |
28 | 27 | ad2antrr | |
29 | simplr | |
|
30 | eqid | |
|
31 | eqid | |
|
32 | 1 30 31 | pmtr3ncomlem2 | |
33 | 3 28 29 32 | syl3anc | |
34 | coeq2 | |
|
35 | coeq1 | |
|
36 | 34 35 | neeq12d | |
37 | coeq1 | |
|
38 | coeq2 | |
|
39 | 37 38 | neeq12d | |
40 | 36 39 | rspc2ev | |
41 | 16 25 33 40 | syl3anc | |
42 | 41 | exp31 | |
43 | 42 | rexlimdva | |
44 | 43 | rexlimivv | |
45 | 2 44 | mpcom | |