Metamath Proof Explorer


Theorem pmtrprfvalrn

Description: The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018)

Ref Expression
Assertion pmtrprfvalrn ranpmTrsp12=1221

Proof

Step Hyp Ref Expression
1 pmtrprfval pmTrsp12=p12z12ifz=121
2 1 rneqi ranpmTrsp12=ranp12z12ifz=121
3 eqid p12z12ifz=121=p12z12ifz=121
4 3 rnmpt ranp12z12ifz=121=t|p12t=z12ifz=121
5 1ex 1V
6 id 1V1V
7 2nn 2
8 7 a1i 1V2
9 iftrue z=1ifz=121=2
10 9 adantl 1Vz=1ifz=121=2
11 1ne2 12
12 11 nesymi ¬2=1
13 eqeq1 z=2z=12=1
14 12 13 mtbiri z=2¬z=1
15 14 iffalsed z=2ifz=121=1
16 15 adantl 1Vz=2ifz=121=1
17 6 8 8 6 10 16 fmptpr 1V1221=z12ifz=121
18 17 eqeq2d 1Vt=1221t=z12ifz=121
19 5 18 ax-mp t=1221t=z12ifz=121
20 19 bicomi t=z12ifz=121t=1221
21 20 rexbii p12t=z12ifz=121p12t=1221
22 21 abbii t|p12t=z12ifz=121=t|p12t=1221
23 prex 12V
24 23 snnz 12
25 r19.9rzv 12s=1221p12s=1221
26 25 bicomd 12p12s=1221s=1221
27 24 26 ax-mp p12s=1221s=1221
28 vex sV
29 eqeq1 t=st=1221s=1221
30 29 rexbidv t=sp12t=1221p12s=1221
31 28 30 elab st|p12t=1221p12s=1221
32 velsn s1221s=1221
33 27 31 32 3bitr4i st|p12t=1221s1221
34 33 eqriv t|p12t=1221=1221
35 22 34 eqtri t|p12t=z12ifz=121=1221
36 4 35 eqtri ranp12z12ifz=121=1221
37 2 36 eqtri ranpmTrsp12=1221