| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t |  | 
						
							| 2 |  | pmtrrn.r |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 1 2 3 | pmtrfrn |  | 
						
							| 5 | 4 | simpld |  | 
						
							| 6 | 5 | simp3d |  | 
						
							| 7 |  | en2 |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 | 5 | simp2d |  | 
						
							| 10 | 4 | simprd |  | 
						
							| 11 | 9 6 10 | jca32 |  | 
						
							| 12 |  | sseq1 |  | 
						
							| 13 |  | breq1 |  | 
						
							| 14 |  | fveq2 |  | 
						
							| 15 | 14 | eqeq2d |  | 
						
							| 16 | 13 15 | anbi12d |  | 
						
							| 17 | 12 16 | anbi12d |  | 
						
							| 18 | 11 17 | syl5ibcom |  | 
						
							| 19 |  | vex |  | 
						
							| 20 |  | vex |  | 
						
							| 21 | 19 20 | prss |  | 
						
							| 22 | 21 | bicomi |  | 
						
							| 23 |  | pr2ne |  | 
						
							| 24 | 23 | el2v |  | 
						
							| 25 | 24 | anbi1i |  | 
						
							| 26 | 22 25 | anbi12i |  | 
						
							| 27 | 18 26 | imbitrdi |  | 
						
							| 28 | 27 | 2eximdv |  | 
						
							| 29 | 8 28 | mpd |  | 
						
							| 30 |  | r2ex |  | 
						
							| 31 | 29 30 | sylibr |  |