Metamath Proof Explorer


Theorem posdif

Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion posdif ABA<B0<BA

Proof

Step Hyp Ref Expression
1 resubcl BABA
2 1 ancoms ABBA
3 simpl ABA
4 ltaddpos BAA0<BAA<A+B-A
5 2 3 4 syl2anc AB0<BAA<A+B-A
6 recn AA
7 recn BB
8 pncan3 ABA+B-A=B
9 6 7 8 syl2an ABA+B-A=B
10 9 breq2d ABA<A+B-AA<B
11 5 10 bitr2d ABA<B0<BA