Metamath Proof Explorer


Theorem preduz

Description: The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Assertion preduz NMPred<MN=MN1

Proof

Step Hyp Ref Expression
1 vex xV
2 1 elpred NMxPred<MNxMx<N
3 eluzelz xMx
4 eluzelz NMN
5 zltlem1 xNx<NxN1
6 3 4 5 syl2anr NMxMx<NxN1
7 6 pm5.32da NMxMx<NxMxN1
8 eluzel2 NMM
9 eluz1 MxMxMx
10 8 9 syl NMxMxMx
11 10 anbi1d NMxMxN1xMxxN1
12 7 11 bitrd NMxMx<NxMxxN1
13 2 12 bitrd NMxPred<MNxMxxN1
14 peano2zm NN1
15 4 14 syl NMN1
16 8 15 jca NMMN1
17 16 biantrurd NMxMxxN1MN1xMxxN1
18 13 17 bitrd NMxPred<MNMN1xMxxN1
19 elfz2 xMN1MN1xMxxN1
20 df-3an MN1xMN1x
21 20 anbi1i MN1xMxxN1MN1xMxxN1
22 anass MN1xMxxN1MN1xMxxN1
23 anass xMxxN1xMxxN1
24 23 anbi2i MN1xMxxN1MN1xMxxN1
25 22 24 bitr4i MN1xMxxN1MN1xMxxN1
26 19 21 25 3bitri xMN1MN1xMxxN1
27 18 26 bitr4di NMxPred<MNxMN1
28 27 eqrdv NMPred<MN=MN1