Metamath Proof Explorer


Theorem preimafvelsetpreimafv

Description: The preimage of a function value is an element of the class P of all preimages of function values. (Contributed by AV, 10-Mar-2024)

Ref Expression
Hypothesis setpreimafvex.p P=z|xAz=F-1Fx
Assertion preimafvelsetpreimafv FFnAAVXAF-1FXP

Proof

Step Hyp Ref Expression
1 setpreimafvex.p P=z|xAz=F-1Fx
2 id XAXA
3 fveq2 x=XFx=FX
4 3 sneqd x=XFx=FX
5 4 imaeq2d x=XF-1Fx=F-1FX
6 5 eqeq2d x=XF-1FX=F-1FxF-1FX=F-1FX
7 6 adantl XAx=XF-1FX=F-1FxF-1FX=F-1FX
8 eqidd XAF-1FX=F-1FX
9 2 7 8 rspcedvd XAxAF-1FX=F-1Fx
10 9 3ad2ant3 FFnAAVXAxAF-1FX=F-1Fx
11 fnex FFnAAVFV
12 cnvexg FVF-1V
13 imaexg F-1VF-1FXV
14 11 12 13 3syl FFnAAVF-1FXV
15 14 3adant3 FFnAAVXAF-1FXV
16 1 elsetpreimafvb F-1FXVF-1FXPxAF-1FX=F-1Fx
17 15 16 syl FFnAAVXAF-1FXPxAF-1FX=F-1Fx
18 10 17 mpbird FFnAAVXAF-1FXP