Metamath Proof Explorer


Theorem prel12g

Description: Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996) (Revised by AV, 9-Dec-2018) (Revised by AV, 12-Jun-2022)

Ref Expression
Assertion prel12g AVBWABAB=CDACDBCD

Proof

Step Hyp Ref Expression
1 preq12nebg AVBWABAB=CDA=CB=DA=DB=C
2 prid1g AVAAD
3 2 3ad2ant1 AVBWABAAD
4 3 adantr AVBWABA=CAAD
5 preq1 A=CAD=CD
6 5 adantl AVBWABA=CAD=CD
7 4 6 eleqtrd AVBWABA=CACD
8 7 ex AVBWABA=CACD
9 prid2g BWBCB
10 9 3ad2ant2 AVBWABBCB
11 preq2 B=DCB=CD
12 11 eleq2d B=DBCBBCD
13 10 12 syl5ibcom AVBWABB=DBCD
14 8 13 anim12d AVBWABA=CB=DACDBCD
15 prid2g AVACA
16 15 3ad2ant1 AVBWABACA
17 preq2 A=DCA=CD
18 17 eleq2d A=DACAACD
19 16 18 syl5ibcom AVBWABA=DACD
20 prid1g BWBBD
21 20 3ad2ant2 AVBWABBBD
22 preq1 B=CBD=CD
23 22 eleq2d B=CBBDBCD
24 21 23 syl5ibcom AVBWABB=CBCD
25 19 24 anim12d AVBWABA=DB=CACDBCD
26 14 25 jaod AVBWABA=CB=DA=DB=CACDBCD
27 elprg AVACDA=CA=D
28 27 3ad2ant1 AVBWABACDA=CA=D
29 elprg BWBCDB=CB=D
30 29 3ad2ant2 AVBWABBCDB=CB=D
31 28 30 anbi12d AVBWABACDBCDA=CA=DB=CB=D
32 eqtr3 A=CB=CA=B
33 eqneqall A=BABA=CB=DA=DB=C
34 32 33 syl A=CB=CABA=CB=DA=DB=C
35 olc A=DB=CA=CB=DA=DB=C
36 35 a1d A=DB=CABA=CB=DA=DB=C
37 orc A=CB=DA=CB=DA=DB=C
38 37 a1d A=CB=DABA=CB=DA=DB=C
39 eqtr3 A=DB=DA=B
40 39 33 syl A=DB=DABA=CB=DA=DB=C
41 34 36 38 40 ccase A=CA=DB=CB=DABA=CB=DA=DB=C
42 41 com12 ABA=CA=DB=CB=DA=CB=DA=DB=C
43 42 3ad2ant3 AVBWABA=CA=DB=CB=DA=CB=DA=DB=C
44 31 43 sylbid AVBWABACDBCDA=CB=DA=DB=C
45 26 44 impbid AVBWABA=CB=DA=DB=CACDBCD
46 1 45 bitrd AVBWABAB=CDACDBCD