Metamath Proof Explorer


Theorem prime

Description: Two ways to express " A is a prime number (or 1)". See also isprm . (Contributed by NM, 4-May-2005)

Ref Expression
Assertion prime AxAxx=1x=Ax1<xxAAxx=A

Proof

Step Hyp Ref Expression
1 bi2.04 x1Axx=AAxx1x=A
2 impexp x1Axx=Ax1Axx=A
3 neor x=1x=Ax1x=A
4 3 imbi2i Axx=1x=AAxx1x=A
5 1 2 4 3bitr4ri Axx=1x=Ax1Axx=A
6 nngt1ne1 x1<xx1
7 6 adantl Ax1<xx1
8 7 anbi1d Ax1<xAxx1Ax
9 nnz AxAx
10 nnre xx
11 gtndiv xAA<x¬Ax
12 11 3expia xAA<x¬Ax
13 10 12 sylan xAA<x¬Ax
14 13 con2d xAAx¬A<x
15 nnre AA
16 lenlt xAxA¬A<x
17 10 15 16 syl2an xAxA¬A<x
18 14 17 sylibrd xAAxxA
19 18 ancoms AxAxxA
20 9 19 syl5 AxAxxA
21 20 pm4.71rd AxAxxAAx
22 21 anbi2d Ax1<xAx1<xxAAx
23 3anass 1<xxAAx1<xxAAx
24 22 23 bitr4di Ax1<xAx1<xxAAx
25 8 24 bitr3d Axx1Ax1<xxAAx
26 25 imbi1d Axx1Axx=A1<xxAAxx=A
27 5 26 bitrid AxAxx=1x=A1<xxAAxx=A
28 27 ralbidva AxAxx=1x=Ax1<xxAAxx=A