Metamath Proof Explorer


Theorem primefldgen1

Description: The prime field of a division ring is the subfield generated by the multiplicative identity element. In general, we should write "prime division ring", but since most later usages are in the case where the ambient ring is commutative, we keep the term "prime field". (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Hypotheses primefldgen1.b B=BaseR
primefldgen1.1 1˙=1R
primefldgen1.r φRDivRing
Assertion primefldgen1 Could not format assertion : No typesetting found for |- ( ph -> |^| ( SubDRing ` R ) = ( R fldGen { .1. } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 primefldgen1.b B=BaseR
2 primefldgen1.1 1˙=1R
3 primefldgen1.r φRDivRing
4 issdrg aSubDRingRRDivRingaSubRingRR𝑠aDivRing
5 4 simp2bi aSubDRingRaSubRingR
6 2 subrg1cl aSubRingR1˙a
7 5 6 syl aSubDRingR1˙a
8 7 adantl φaSubDRingR1˙a
9 8 snssd φaSubDRingR1˙a
10 9 ralrimiva φaSubDRingR1˙a
11 rabid2 SubDRingR=aSubDRingR|1˙aaSubDRingR1˙a
12 10 11 sylibr φSubDRingR=aSubDRingR|1˙a
13 12 inteqd φSubDRingR=aSubDRingR|1˙a
14 3 drngringd φRRing
15 1 2 ringidcl RRing1˙B
16 14 15 syl φ1˙B
17 16 snssd φ1˙B
18 1 3 17 fldgenval Could not format ( ph -> ( R fldGen { .1. } ) = |^| { a e. ( SubDRing ` R ) | { .1. } C_ a } ) : No typesetting found for |- ( ph -> ( R fldGen { .1. } ) = |^| { a e. ( SubDRing ` R ) | { .1. } C_ a } ) with typecode |-
19 13 18 eqtr4d Could not format ( ph -> |^| ( SubDRing ` R ) = ( R fldGen { .1. } ) ) : No typesetting found for |- ( ph -> |^| ( SubDRing ` R ) = ( R fldGen { .1. } ) ) with typecode |-