Description: The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prmdiv.1 | |
|
Assertion | prmdivdiv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmdiv.1 | |
|
2 | fz1ssfz0 | |
|
3 | simpr | |
|
4 | 2 3 | sselid | |
5 | simpl | |
|
6 | elfznn | |
|
7 | 6 | adantl | |
8 | 7 | nnzd | |
9 | prmnn | |
|
10 | fzm1ndvds | |
|
11 | 9 10 | sylan | |
12 | 1 | prmdiv | |
13 | 5 8 11 12 | syl3anc | |
14 | 13 | simprd | |
15 | 7 | nncnd | |
16 | 13 | simpld | |
17 | elfznn | |
|
18 | 16 17 | syl | |
19 | 18 | nncnd | |
20 | 15 19 | mulcomd | |
21 | 20 | oveq1d | |
22 | 14 21 | breqtrd | |
23 | 16 | elfzelzd | |
24 | fzm1ndvds | |
|
25 | 9 16 24 | syl2an2r | |
26 | eqid | |
|
27 | 26 | prmdiveq | |
28 | 5 23 25 27 | syl3anc | |
29 | 4 22 28 | mpbi2and | |