| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmdiv.1 |
|
| 2 |
|
fz1ssfz0 |
|
| 3 |
|
simpr |
|
| 4 |
2 3
|
sselid |
|
| 5 |
|
simpl |
|
| 6 |
|
elfznn |
|
| 7 |
6
|
adantl |
|
| 8 |
7
|
nnzd |
|
| 9 |
|
prmnn |
|
| 10 |
|
fzm1ndvds |
|
| 11 |
9 10
|
sylan |
|
| 12 |
1
|
prmdiv |
|
| 13 |
5 8 11 12
|
syl3anc |
|
| 14 |
13
|
simprd |
|
| 15 |
7
|
nncnd |
|
| 16 |
13
|
simpld |
|
| 17 |
|
elfznn |
|
| 18 |
16 17
|
syl |
|
| 19 |
18
|
nncnd |
|
| 20 |
15 19
|
mulcomd |
|
| 21 |
20
|
oveq1d |
|
| 22 |
14 21
|
breqtrd |
|
| 23 |
16
|
elfzelzd |
|
| 24 |
|
fzm1ndvds |
|
| 25 |
9 16 24
|
syl2an2r |
|
| 26 |
|
eqid |
|
| 27 |
26
|
prmdiveq |
|
| 28 |
5 23 25 27
|
syl3anc |
|
| 29 |
4 22 28
|
mpbi2and |
|